Building the

DECENTRALISED UTILITY ON THE ETHEREUM BLOCKCHAIN

Ecosummit Berlin 2016

INNOVATION HUE

Ethereum Blockchain | An Overview

Cryptographically Secure

Uses tried and true public/ private signature technology. Blockchain applies this technology to create transactions that are impervious to fraud and establishes a shared truth.

Data & Smart Contract

The Ethereum blockchain can store both data and Smart Contract ("Logic") in the blockchain

Decentralized

There are many replicas of the blockchain database and no one participant can tamper it. Consensus among majority participants is needed to update the database.

Immutable Ledger

Blockchain is a write-once database so it records an immutable record of every transaction that occurs.

The blockchain provides a trust framework that allows systems to be developed for actors to interact reliably and securely

Blockchain Characteristics

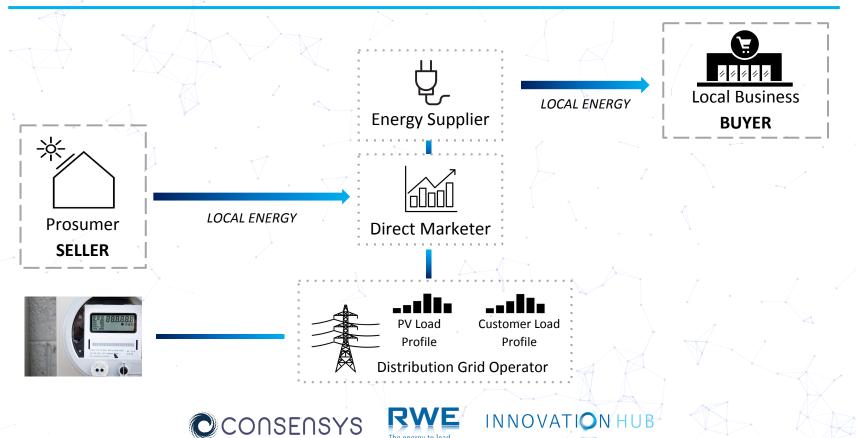
Blockchain technology enables decentralized ledgers and secure value transfer mechanisms to provide significant infrastructure and business processes for financial institutions.

_		
	Blockchain Characteristics	Benefits
•	Digitized	 Simplicity and efficiency through use of digital identity of all actors in the system Auditability and improved access by storing coded references to documents and signatures Ability to trade physical assets through representative digital token of value with provenance tracking
	Decentralized	 Eliminates need for central approving authority for transaction and related latency No single point of failure or attack Reduced need for supervision and associated costs Reduced settlement risks and transaction costs
	Programmable and Secure	 Transactions are cryptographically signed using industry leading protocols like SHA-256 Smart contracts enable data and process to co-exist reducing process redundancies and errors Support for multi-signature authentication and authorization helps further reduce fraud
	Immutable	 Immutable ledger for improved auditability and record keeping Reduced risk of accounting fraud Improved access and monitoring for regulators

Blockchain Configurations

There are three patterns of blockchain configurations to suit varied use case needs

Configuration	Details —
Public Blockchains	 Trust-less due to consensus algorithm enabling anyone to join as a participant Must be expensive and difficult to publish a block to prevent fraud and spam (proof of work/mining) Examples include the public Ethereum and Bitcoin networks Digital currency or tokens (e.g. Ether) are used to pay to process transactions and smart contracts
Consortium Blockchains	 Consortium blockchains are also called Semi-Private or Shared Permissioned Blockchains Only verified participants are allowed to publish blocks Optimized consensus algorithms enable much faster transaction times than public networks Does not require digital currency for transaction processing, though tokens may be valuable
Private	 Private blockchains are also called Permissioned Blockchains or Sandboxes Designed for rapid application development and instant deployment


CONSENSYS

Blockchains

Suited for single enterprise solutions that can be configured for high throughput

Does not require digital currency for transaction processing, but tokens could be useful

Connecting buyer and seller with existing processes

Building the decentralised energy customer journey

Decentralisation

Renewable Energy

Locality

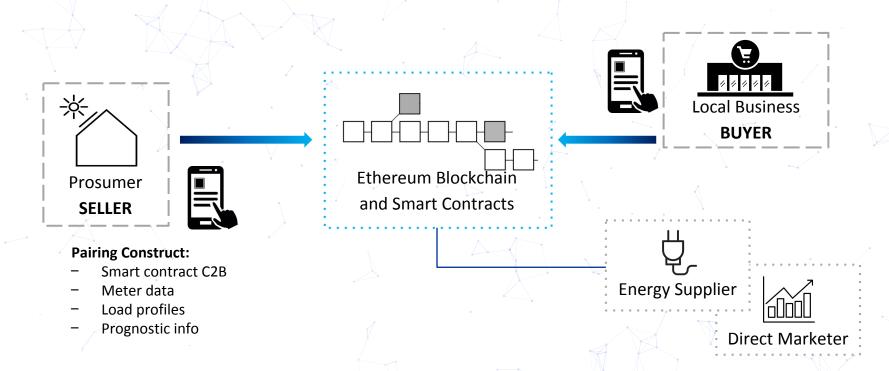
Trends driven by:

- Technology
- Economics
- Evolution in Regulation
- Efficiency
- Cost to serve
- Aspiration
- Society

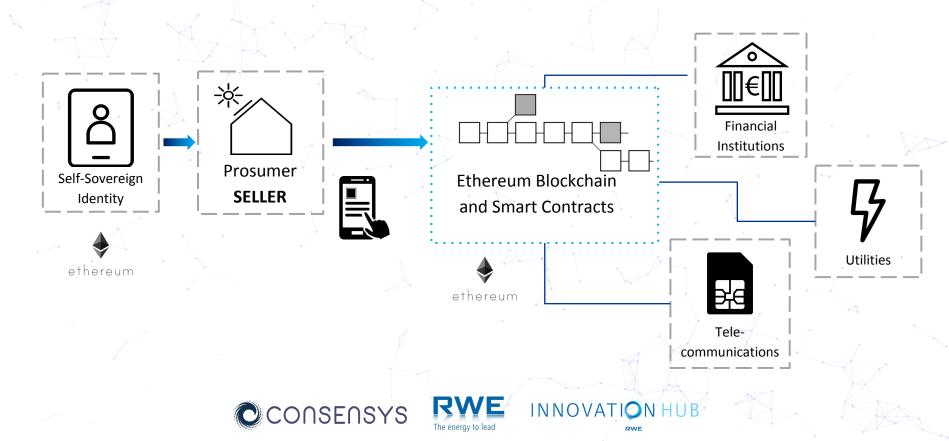
But real consumer / prosumer demands are uncertain...

Validate:

- Building an MVP
- Research and experiment
- Customer insights
- Evolving role of the utility



Integrating blockchain in a decentralised energy solution



The Ethereum blockchain is a transactional and business logic framework

Contacts

John Lilic ConsenSys john.lilic@consensys.net

Sam Warburton RWE sam.warburton@rwe.com

