Building the # DECENTRALISED UTILITY ON THE ETHEREUM BLOCKCHAIN Ecosummit Berlin 2016 INNOVATION HUE ## Ethereum Blockchain | An Overview ## Cryptographically Secure Uses tried and true public/ private signature technology. Blockchain applies this technology to create transactions that are impervious to fraud and establishes a shared truth. #### **Data & Smart Contract** The Ethereum blockchain can store both data and Smart Contract ("Logic") in the blockchain #### Decentralized There are many replicas of the blockchain database and no one participant can tamper it. Consensus among majority participants is needed to update the database. ### Immutable Ledger Blockchain is a write-once database so it records an immutable record of every transaction that occurs. The blockchain provides a trust framework that allows systems to be developed for actors to interact reliably and securely ## **Blockchain Characteristics** Blockchain technology enables decentralized ledgers and secure value transfer mechanisms to provide significant infrastructure and business processes for financial institutions. | _ | | | |---|----------------------------|--| | | Blockchain Characteristics | Benefits | | • | Digitized | Simplicity and efficiency through use of digital identity of all actors in the system Auditability and improved access by storing coded references to documents and signatures Ability to trade physical assets through representative digital token of value with provenance tracking | | | Decentralized | Eliminates need for central approving authority for transaction and related latency No single point of failure or attack Reduced need for supervision and associated costs Reduced settlement risks and transaction costs | | | Programmable and
Secure | Transactions are cryptographically signed using industry leading protocols like SHA-256 Smart contracts enable data and process to co-exist reducing process redundancies and errors Support for multi-signature authentication and authorization helps further reduce fraud | | | Immutable | Immutable ledger for improved auditability and record keeping Reduced risk of accounting fraud Improved access and monitoring for regulators | ## **Blockchain Configurations** There are three patterns of blockchain configurations to suit varied use case needs | Configuration | Details — | |---------------------------|---| | Public
Blockchains | Trust-less due to consensus algorithm enabling anyone to join as a participant Must be expensive and difficult to publish a block to prevent fraud and spam (proof of work/mining) Examples include the public Ethereum and Bitcoin networks Digital currency or tokens (e.g. Ether) are used to pay to process transactions and smart contracts | | Consortium
Blockchains | Consortium blockchains are also called Semi-Private or Shared Permissioned Blockchains Only verified participants are allowed to publish blocks Optimized consensus algorithms enable much faster transaction times than public networks Does not require digital currency for transaction processing, though tokens may be valuable | | Private | Private blockchains are also called Permissioned Blockchains or Sandboxes Designed for rapid application development and instant deployment | CONSENSYS Blockchains Suited for single enterprise solutions that can be configured for high throughput Does not require digital currency for transaction processing, but tokens could be useful # Connecting buyer and seller with existing processes ## **Building the decentralised energy customer journey** Decentralisation Renewable Energy Locality #### Trends driven by: - Technology - Economics - Evolution in Regulation - Efficiency - Cost to serve - Aspiration - Society But real consumer / prosumer demands are uncertain... #### Validate: - Building an MVP - Research and experiment - Customer insights - Evolving role of the utility # Integrating blockchain in a decentralised energy solution # The Ethereum blockchain is a transactional and business logic framework # **Contacts** John Lilic ConsenSys john.lilic@consensys.net Sam Warburton RWE sam.warburton@rwe.com