
ALGORAND

The Efficient and Democratic Ledger

Silvio Micali
CSAIL, MIT

Cambridge, MA 02139, USA
silvio@csail.mit.edu

July 6, 2016

Abstract

Algorand is a truly decentralized, new, and secure way to manage a shared ledger. Unlike prior
approaches based on proof of work, it requires a negligible amount of computation, and generates
a transaction history that does not fork with overwhelmingly high probability. This approach
cryptographically selects —in a way that is provably immune from manipulations, unpredictable
until the last minute, but ultimately universally clear— a set of verifiers in charge of constructing
a block of valid transactions. This approach applies to any way of implementing a shared ledger
via a tamper-proof sequence of blocks, including traditional blockchains. This paper also presents
more efficient alternatives to blockchains, which may be of independent interest.

Algorand significantly enhances all applications based on a public ledger: payments, smart
contracts, stock settlement, etc. But, for concreteness, we shall describe it only as a money platform.

Note: This paper is based on the previous one of Gorbunov and Micali, “Democoin: A Publicly
Verifiable and Jointly Serviced Cryptocurrency”, https://eprint.iacr.org/2015/521 May 30, 2015.

These technologies are the object of the following patent applications: US62/117,138 US62/120,916
US62/142,318 US62/218,817 US62/314,601 PCT/US2016/018300 US62/326,865 62/331,654 US62/333,340
US62/343,369 US62/344,667 US62/346,775 US62/351, US62/653,482 US62/352,195

ar
X

iv
:1

60
7.

01
34

1v
1

 [
cs

.C
R

]
 5

 J
ul

 2
01

6

1 Introduction

Money is becoming increasingly virtual. It has been estimated that about 80% of United States
dollars today exist only as ledger entries [2]. Other financial instruments are following suit.

In an ideal world, where we could count on a universally trusted central entity, immune
to all possible cyber attacks, money and other financial transactions could be solely electronic.
Unfortunately, it is hard to find such an entity in the real world. Accordingly, decentralized
cryptocurrencies such as Bitcoin [7] and “smart contract” systems such as Ethereum have been
proposed [5]. At the heart of these systems is a shared ledger that reliably records a sequence of
transactions, as varied as payments and contracts, in a tamperproof way. The technology of choice
to guarantee such tamperproofness is the blockchain. Blockchains are in fact behind applications
such as cryptocurrencies [7], financial applications [5], and the Internet of Things [8]. Several
techniques to manage blockchain-based ledgers have been proposed: proof of work [7], proof of
stake [6], practical Byzantine fault-tolerance [21], or some combination.

Currently, however, ledgers can be inefficient to manage. For example, Bitcoin’s proof-of-work
approach requires a vast amount of computation, is wasteful and scales poorly. In addition it de
facto concentrates power in very few hands.

We thus wish to put forward a new way to implement a public ledger that offers the convenience
and efficiency of a centralized system run by a trusted and inviolable authority, without the
inefficiencies and weaknesses of current decentralized implementations. We call our approach
Algorand because we use algorithmic randomness to select, based on the ledger constructed so far,
a set of verifiers who are in charge of constructing the next block of valid transactions. Naturally,
we ensure that each one of these selections is provably immune from manipulations, unpredictable
until the last minute, but ultimately universally clear.

The Algorand approach certainly applies to blockchains, but more generally also to any way to
generate a tamperproof sequence of blocks. We actually put forward a new way —alternative to,
and more efficient than, blockchains— that may be of independent interest.

To better appreciate these advantages, let us review the limitations of prior approaches.

2 Prior Problems and Concerns

Prior decentralized payment systems are ingenious, but also problematic. Let us consider the case
of Bitcoin, and its many variants. Essentially, Bitcoin organizes all processed payments in a chain
of blocks, B1, B2, . . ., each consisting of multiple payments, such that, all payments of B1, taken
in any order, followed by those of B2, in any order, etc., constitute a sequence of valid payments.
This sequence of blocks is a chain because it is structured so as to ensure that any change, even
in a single block, percolates in all subsequent blocks, making it easier to spot any alteration of the
payment history. (As we shall see, this is achieved by including in each block a cryptographic hash
of the previous one.) Such block structure is referred to as a blockchain.

Generating a block in Bitcoin, however, requires a great amount of computation. So much so
that, even in a permissioned setting,1 Bitcoin must heavily rely on incentives to compensate its
users for their very expensive computational efforts.

1In a permissioned system, only carefully vetted users are permitted to join. Typically, such vetted users could
be relied to act in a prescribed way without any significant rewards. By contrast, in a “permissionless” setting, all
users are free to join at any time. Accordingly, here incentives become crucial to encourage a prescribed behavior.

1

Bitcoin’s approach is quickly recalled in Appendix A. Here, we just discuss the assumption it
makes, the general problems it suffers from, and some of the personal concerns it has generated.
For these limited purposes, it suffices to say that, in Bitcoin, a user may own multiple public keys
of a digital signature scheme, that money is associated to public keys, and that a payment is a
digital signature transferring some amount of money money from a public key to another.

Honest Majority of Computational Power. Bitcoin assumes that no malicious entity (or
a coalition of coordinated malicious entities) E controls the majority of the computational power
devoted to block generation. Else, such an E would be able to modify the blockchain, and thus
re-write the payment history, as it pleases. In particular, therefore, it could make a payment P ,
obtains the benefits paid for, and then “erase” any trace of P . (See Appendix A for further details.)

Bitcoin suffers from three main problems. The first two are (interrelated) scalability problems.

Problem 1: Computational Waste Bitcoin’s “proof of work” block generation process requires
an extraordinary amount of computation. Currently, with just a few hundred thousands public keys
in the systems, the top 500 most powerful supercomputers can only muster a mere 12.8% percent
of the total computational power required from the Bitcoin players. This amount of computation
would greatly increase if should substantially more users join the system. 4

Problem 2: Concentration of Power Due to the exorbitant amount of computation required,
today a user trying to generate a new block using an ordinary desktop (let alone a cell phone)
expects to lose money. Indeed, the expected cost of the electricity necessary to power the successful
computation of a new block with an ordinary computer exceeds the total reward the computer
owner expects to make. Only using pools of specially built computers, that do nothing else other
than “mining new blocks”, one expects to make a profit by generating new blocks. Accordingly,
nowadays there are, de facto, two disjoint classes of users: ordinary ones, who only make payments,
and specialized mining pools, that only search for new blocks.

It thus should not be a surprise that, as of recently, the total computing power for block
generation lies with just five pools. In such conditions, the assumption that a majority of the
computational power is honest becomes less credible.

Problem 3: Ambiguity In Bitcoin, the blockchain is not necessarily unique. The end of the
chain may fork, so that one user may observe that the blockchain is —say— B1, . . . , Bk, B

′
k+1, B

′
k+2

and another may observe that it is B1, . . . , Bk, B
′′
k+1, B

′′
k+2, B

′′
k+3. Some time later, after a few more

blocks have been added, will users agree on blocks Bk+1 and Bk+2. Accordingly, the payee of a
payment contained in one of the last blocks cannot be sure that he has actually been paid. The
last few blocks may indeed be replaced with others containing different payments. 4

Quite separately, two concerns have been raised about Bitcoin. In fairness, however, these
concerns are not technological weaknesses, but simply the other side of the coin of the basic
properties of Bitcoin: what is an advantage to some, may be a disadvantage to others.

Law-Enforcement Concerns. The (pseudo) anonymity offered by Bitcoin payments may be
misused for money laundering and/or the financing of criminal individuals or terrorist organizations.

In principle, traditional banknotes or gold bars, that actually offer perfect anonymity, should
pose the same challenge, but the physicality of these currencies substantially slows down money

2

transfers so as to permit some degree of monitoring to law enforcement agencies. The situation
may be dramatically different for a significantly anonymous digital currency. 4

Monetary-Policy Concerns. The ability to “print money” is one of the very basic powers of
a nation state. In principle, therefore, the massive adoption of a convenient and independently
floating currency may curtail this power. At this level of adoption, however, Bitcoin is far from
being a threat to governmental monetary policies. And, due to its scalability problems discussed
above, it may never be. 4

3 Preliminaries

3.1 Cryptographic Background

Digital Signatures. Digital signatures are a powerful way to authenticate information, because
they do not require any shared secret keys. A digital signature scheme consists of three fast
algorithms: a probabilistic key generator G, a signing algorithm S, and a verification algorithm V .

After choosing a sufficiently high integer k, a player x uses G to produce a pair of k-bit keys
(i.e., strings): a “public” key PKx and a matching “secret” signing key SKx. Crucially, a public
key does not “betray” its corresponding secret key. That is, even given knowledge of PKx, no one
other than x is able to compute SKx in less than astronomical time.

Player x uses SKx to digitally sign messages. For each possible message (binary string) m,
x runs algorithm S on inputs m and SKx in order to produce a string, denoted by SIGPKx or
SIGx(m) —if x has a single public key— referred to as a digital signature of m relative to PKx or
x’s digital signature of m.

Everyone knowing PKx can use it to verify the digital signatures produced by x. Specifically,
on inputs (a) the public key PKx of a player x, (b) a message m, and (c) a string s, that is, the
alleged digital signature of x for the message m, the verification algorithm V outputs either YES
or NO.

The properties we require from a digital signature scheme are:

0. Retrievability: For all strings m, m is readily computable from SIGx(m).2

1. Legitimate signatures are always verified: If s = SIGx(m), then V (PKx,m, s) = Y ES; and

2. Digital signatures are very hard to forge: Without knowledge of SKx finding a string s such that
V (PKx,m, s) = Y ES, for a message m never signed by x, requires an astronomical amount of
time.

3. Guaranteed Uniqueness. For all strings PK ′ and m, there exists at most one string s such that
V (PK ′,m, s) = 1.

Accordingly, to prevent anyone else from signing messages on his behalf, a player x must keep his
signing key SKx secret (hence the term “secret key”), and to enable anyone to verify the messages
he does sign, x has an interest in publicizing key PKx (hence the term “public key”).

2This is without loss of generality, since a digital signature of m could always be defined so as to include m itself.

3

Ideal Hashing. We shall rely on an efficiently computable cryptographic hash function, H,
mapping arbitrarily long strings to binary strings of fixed length. Following a long tradition, we
model H as a random oracle, essentially a function mapping each possible string s to a randomly
and independently selected (and then fixed) binary string, H(s), of the chosen length.

In this paper, and in many implementations of Bitcoin, H has 256-bit long outputs. Indeed,
such length is short enough to make the system efficient and long enough to make the system
secure. For instance, we want H to be collision-resilient. That is, it should be hard to find two
different strings X and Y such that H(X) = H(Y). When H is a random oracle with 256-bit long
outputs, then finding any such pair of strings is indeed hard. (Trying at random, and relying on
the birthday paradox, would require 2256/2 = 2128 trials.)

3.2 The Idealized Payment System

Let us start by describing an abstract system, the idealized system, that Algorand tries to mimic.

1. The Initial Status. Money is associated to individual public keys (privately generated and owned
by users). Letting PK1, . . . , PKj be the initial public keys and a1, . . . , aj their respective initial
amounts of money units, then the initial status is

S0 = (PK1, a1), . . . , (PKj , aj) ,

which is assumed to be common knowledge in the system.

2. Payments. Let PK be a public key currently having a ≥ 0 money units, PK ′ another public
key, and a′ a non-negative number no greater than a. Then, a (valid) payment P is a digital
signature, relative to PK, specifying the transfer of a′ monetary units from PK to PK ′, together
with some additional information. In symbols,

P = SIGPK(PK,PK ′, a′, I,H(I)),

where I represents any additional information deemed useful but not sensitive (e.g., time
information), and I any additional information deemed sensitive (e.g., the reason for the
payment, possibly the identities of the owners of PK and the PK’s, and so on).

We refer to PK (or its owner) as the payer, to each PK ′ (or its owner) as a payee, and to a′ as
the amount of the payment P .

Note that users may join the system whenever they want by generating their own public/secret
key pairs. Accordingly, the public key PK ′ appearing in the payment P above may be a newly
generated public key that never “owned” any money before.

3. The Magic Ledger. In the ideal system, no payments occur simultaneously, and all payments
are valid. As soon as each payment is made, it is magically and immediately appended to a
non-tamperable list L, “magically posted on the sky” for everyone to see. This list comprises
all payments made so far, together with the time at which they occur:

L = (P1, t1), (P2, t2),

4

Discussion.

• More General Payments and Unspent Transaction Output. More generally, if a public key
PK owns an amount a, then a valid payment P of PK may transfer the amounts a′1, a

′
2, . . .,

respectively to the keys PK ′1, PK
′
2, . . ., so long as

∑
j a
′
j ≤ a.

In Bitcoin and similar systems, the money owned by a public key PK is segregated into separate
amounts, and a payment P made by PK must transfer such an amount a in its entirety. If
PK wishes to transfer only a fraction a′ < a of this amount to another key, then it must also
transfer the balance, the unspent transaction output, to another key, possibly PK itself.

It is trivial to adopt this approach also in our ideal system and Algorand. But, in order to
focus on the novel aspects of Algorand, we prefer to stick our simpler forms of payments.

• Current Status. The Idealized Scheme does not directly provide information about the current
status of the system (i.e., about how many money units each public key has). This information
is deducible from the Magic Ledger. (The same is true for the ledger of Bitcoin.)

In the ideal system, an active user continually stores and updates the latest status information.
Else, he would have to reconstruct it from scratch, or from the last time he computed it. In
Appendix E, however, we shall augment Algorand so as to enable its users to reconstruct the
current status in an efficient manner.

• Security and “Privacy”. Digital signatures guarantee that no one can forge a payment by
another user. In a payment P , its public keys and amount are not hidden, but its sensitive
information I is. Indeed, only H(I) appears in P , and since H is an ideal hash function, H(I)
is a random 256-bit value, and thus there is no way to figure out what I was better than by
simply guessing it. Yet, to prove what I was (e.g., to prove the reason for the payment) the
payer may just reveal I. The correctness of the revealed I can be verified by computing H(I)
and comparing the resulting value with the last item of P . In fact, H is collision resilient, and
thus it is hard to find a second value I ′ such that H(I) = H(I ′).

3.3 Basic Notions and Notations

Users and Keys We identify each public key PK with the user owning it. Accordingly, we can
say that PK is honest to mean that its owner is honest, that is, that he follows every instruction
prescribed in Algorand. We can also say that PK sends or receives a message. And so on.

Unique Representation Each object in Algorand has a unique representation. In particular,
each set {(x, y, z, . . .) : x ∈ X, y ∈ Y, z ∈ Z, . . .} is ordered in a pre-specified manner: e.g., first
lexicographically in x, then in y, etc.

Clocks We assume that there is a global clock readable by everyone. (It actually suffices to
assume each key X reads its own clock that is at most —say— one second off from a global clock.)

Rounds Algorand is organized in time intervals, called rounds. Initially, rounds can be thought
as being of fixed length and non overlapping.3 (One-minute rounds suffice in realistic applications.)

3In general, the duration of a round depends on the current number of users and the payment rate. At the payment
rate of Bitcoin, one minute should be plenty, in Algorand, to accommodate millions of users. Yet, a round can be

5

We consistently use superscripts to indicate rounds. To indicate that a non-numerical quantityQ
(e.g., a string, a public key, a set, a digital signature, etc.) refers to a round r, we simply write Qr.
Only when Q is a genuine number (as opposed to a binary string interpretable as a number), we
write Q(r) in order to avoid that the symbol r could be interpreted as the exponent of Q.

At the start of a round r > 0, the set of all public keys is PKr, and the system status is

Sr−1 =
{(
X, a

(r−1)
X , . . .

)
: X ∈ PKr

}
,

where a
(r−1)
X is the amount of money available to the public key X at the beginning of round r,

and “room” is kept for other components as well.
For round 0, PK0 consists of the set of initial public keys, and S0 is the initial status.4

Payments In Algorand a round-r payment P of a key X ∈ PKr has the same format and
semantics as in the Ideal System, except that it also specifies, as its first item, the round r in which
it is actually made. That is,

P = SIGPK(X,PK ′, a, I,H(I)) .

Payment P is individually valid if its amount a is less than or equal to a
(r)
X . A set of round-r

payments of X is collectively valid if the sum of the payments’ amounts is less than a
(r)
X .

Paysets In a round r, a payset is the union of collectively valid sets of payments made by some
users in round r. A payset P is maximal if no superset of P is a payset in round r.

Official Paysets For every round r, Algorand publicly selects (in a manner that we shall describe
later on) a single (possibly empty) payset, PAY r, the round’s official payset.

(Essentially, PAY r represents the round-r payments that have “really” happened.)

Round Operations The goal of a round r is to compute, from PAY r and Sr−1, by means of
a proper protocol, the official payset PAY r, the next status Sr, and the next set of public keys
PKr+1 (i.e., the union of PKr and the set of all payee keys that appear for the first time in the
payments in PAY r).

Round-Limited Validity Policy By choice, a round-r payment P is not considered valid in a
round r′ 6= r, and thus cannot appear in PAY r′ .

Remark. This policy actually removes the burden of having to check whether an identical payment
was ever made before. It also allows for conceptual clarity, without practical inconvenience. As
we shall see, even perfectly organized malicious users cannot frequently prevent a valid round-r
payment from entering PAY r. Thus, if P does not appear in PAY r, then its payer can “reissue”
the payment, after marking r + 1, at the next round. In any case, Algorand can be adapted so as
to accommodate different policies.5

completed more quickly if no malicious users act in it. Furthermore, some implementation of Algorand will be more
efficient if some overlap between consecutive rounds is allowed (see, in particular, Appendix C.3). Finally, to improve
the throughput of Algorand, we may want to run concurrently several rounds (see Subsection 6.1).

4As in the ideal system, each Sr is a conceptual quantity deducible from the payment history. In appendix E, we
shall directly authenticate status information, and make it easier to compute.

5For instance, similarly to Bitcoin, Algorand may allow payments to be processed at any round. Alternatively,

6

Permissioned and Permissionless Systems A payment system is permissionless if any user
is allowed to join it at any time, and permissioned otherwise.

3.4 The Adversarial Model

Honest and Malicious Users A user is honest if he always follows its prescribed instructions,
and malicious otherwise.

The Adversary Users cannot become malicious, unless previously attacked by the Adversary.
The Adversary is an efficient (technically polynomial-time) algorithm, personified for colorful-

ness, who can choose to attack any user at any round. If the Adversary attacks a user X in round r,
then X becomes malicious only in round r + 1.

The Adversary subsumes and perfectly coordinates all malicious users. He receives instanta-
neously all messages they receive in the protocol, and takes all actions on their behalf, including
sending all their messages. The Adversary can have the malicious users deviate their prescribed
instructions in arbitrary ways.

This powerful adversary does not have, however, unbounded computational power, and cannot
successfully forge the digital signature of a honest user, except with negligible probability.
Furthermore, his ability to attack honest users is bounded by one of the following two assumptions:

1. Honest Majority of Users: A given majority (e.g., 75%) of the users are honest.

2. Honest Majority of Money: Honest users own a given majority of the money in the system.

Discussion. Designing a secure system is much easier in a static adversarial model, when users
are born malicious or honest, and remain so forever. This is so even when malicious users can
perfectly coordinate their actions. The latter, of course, is a rather pessimistic hypothesis. In
reality, perfect coordination, particularly among very many individuals is hard. But, since it is
hard to be sure about the level of coordination malicious users may enjoy, we’d better be safe than
sorry.

Security in a static adversarial model, however, is not too meaningful. In realistic settings,
initially honest players may eventually become malicious, but this transformative process is not
instantaneous. Should an Adversary be able to simply “point” at any user, at any time, and
immediately coerce them to do his bidding, there would be very little room security.

Our model thus takes a middle road. The adversary can target any user he wants, but, if a
round takes a minute, then he needs more than one minute to take control over the user.

Finally, note that the Honest Majority of Money assumption is somewhat related to Bitcoin’s
Honest Majority of Computational Power assumption, in the sense that, since computational power
can be bought with money, if malicious users in Bitcoin owned most of the money, then they could
gain the majority of computational power.

Algorand can allow a payment marked r to be processed only in rounds r, . . . , r + k, for some fixed, but suitably
large, integer k (e.g., k = 100). In light of our promise that no valid payment can be delayed too long, no matter
what malicious users might do, this alternative policy
(a) essentially guarantees that the payment will go through without its payer having to take any further action, and
(b) does not make it too onerous to check whether a payment was already made in the past.

7

3.5 The Communication Model

Algorand envisages a separate underlying communication network that reliably handles the
necessary message traffic in a timely fashion. We envisage two main ways of transmitting messages.

1. Direct Messages. This way simply enables a user X to send a message m to another user Y .

2. Message Propagation. As in Bitcoin, this way enables a user to send a message m to all users in
a peer-to-peer (“gossip”) fashion, via a message-propagation protocol. Essentially, every active
user X randomly selects a small number of active users as his neighbors. During the propagation
of a message m, a user X receiving m for the first time forwards it to each of his neighbors, until
he receives an acknowledgement that they have received m. The propagation of m terminates
when no user receives m for the first time.

We make the following reliability assumptions: there exist constants δ and π, with δ < π, such that

(a) If a user X directly sends a message m to a user Y at a time t, then with overwhelming
probability Y receives m by time t+ δ .

(b) If an honest user X propagates a message m at a time t, then with overwhelming probability
all users receive m by time t+ π.

Let us emphasize that, since the communication network is separate, the above delivery bounds
hold no matter what the malicious users might do.

In the direct sending of a message m, of course, there is nothing for the malicious users to do.
The delivery of m is solely handled by the network.

In the propagation of a message m, instead, all users are involved. Therefore the malicious
players may, in particular, decide not to re-transmit m at all. Yet, since the honest users are
the majority, and when they receive m for the first time, they re-transmit to sufficiently many
randomly selected neighbors, m will quickly reach all users. (Since malicious users may only choose
each other as neighbors, no delivery guarantee is given when the propagation of a message is started
by a malicious user.)

Remark Let us stress even more that the above delivery bounds do not imply that, when a protocol
instructs a user X to propagate a message m at a prescribed time t, by time t + π, either m is
received by all users or by none of them (as it could certainly happen when X is malicious and
does not propagate m at all). Indeed, a malicious X may purposely start propagating m at a time
t′ ∈ (t + τ). Thus, it is also possible that, by time t + τ , m is received only by some, but not
all, honest users. Indeed malicious players may exploit delayed propagation in order to generate
“dissent” among honest players.

4 Organization of the Following Sections

In Section 5 we present a basic version of Algorand based on blockchains. This version is a
permissionless payment system or a separate digital currency. It solves the discussed three problems
of Bitcoin, but does not address the also discussed law-enforcement and monetary-policy concerns.
This basic version already enjoys a very good performance, but relies on some strong assumptions.

8

In Section 6, still using blockchains, we improve the basic version of Algorand by removing the
need for its strong assumptions.(We also discuss some more specialized cryptographic tools that
could be advantageously incorporated in Algorand.)

In Section 7 we show how a permissioned (still blockchain-based) implementation of Algorand
that avoids the discussed law-enforcement concerns, while still enjoying some degree of privacy. This
version of Algorand naturally yields an efficient, secure, and purely distributed form of payment
based on a national currency, thereby avoiding also the discussed monetary policy concerns.

In Appendix C.1, after recalling the notion of a Byzantine agreement (BA), we present a novel
BA protocol, based on digital signatures, that is much more efficient than prior ones. This protocol
certainly enhances the performance of Algorand, but may be of independent interest.

In Appendix 6.5 we also introduce a better way to structure blocks in order to construct
a tamperproof public ledger. Unlike blockchains, the new structure enables one to verify the
correctness of any given block without having to process all subsequent ones —which is wasteful.

In Appendix E we show how to authenticate and handle the system status efficiently and
directly, rather than deducing it from the authenticated payment history.

Finally, in Appendix B, we present some additional alternative versions of Algorand.

5 Basic Algorand

The basic version of Algorand is a permissionless payment system, which relies not only on the
Honest Majority of Users assumption, but also on the following assumptions and requirement.

5.1 Special (Temporary) Assumptions and Requirements

1. One-Key-Per-User: Every user has a single public key.

This assumption might be reasonable only in permissioned implementations of Algorand. It
enables one to perfectly identify a key with its owner, so as to speak meaningfully of honest
majorities, whether of keys or users; and to temporarily ignore so called “Sybil attacks”, where
—in our application— a malicious user may artificially increase the number of keys he owns in
an effort to enhance his chances to disrupt the system.

2. Longer Corruption Time: The Adversary needs multiple rounds to control an honest user.

That is, there exists a small constant k > 1 (e.g., k = 40) such that, if the Adversary attacks a
user X in a round r, then X remains honest at least until round r + k.

In addition, the basic version of Algorand relies on the following requirement

3. Continual Participation: An honest user participates to each round of the protocol.

The above assumptions and requirements will no longer be needed in the versions of Algorand of
Section 6.

9

5.2 Intuition

Blocks and Proven Blocks Until Subsection 6.5, the block Br corresponding to a round r
specifies: r itself; the set of payments of round r, PAY r; and the hash of the previous block,
H(Br−1). Thus, starting from some fixed block B0, we have a traditional blockchain:

B1 = (1, PAY 1, H(B0)), B2 = (2, PAY 2, H(B1)), B3 = (3, PAY 3, H(B2)), . . .

The blockchain of Bitcoin is different, as each of its blocks must satisfy a special property that
makes block generation computationally intensive. On the positive side, however, in Bitcoin the
blockchain itself constitutes the tamper-proof public ledger. In Algorand, a block Br need not
satisfy any special property, and its authenticity must be vouched by a separate piece of information,
which turns Br into a proven block, Br. (We could, of course, include this information in the blocks
themselves, but find it conceptually cleaner to keep it separate.) In Algorand, therefore, the Magic
Ledger is implemented by the sequence of the proven blocks,

B1, B2, . . .

No Ambiguities Since Bitcoin’s blockchain may fork, its blocks are not quite stable and, at some
point, a user may find that a recent block no longer belongs to the current blockchain. Algorand,
by contrast, guarantees a unique blockchain with overwhelming probability. That is, each block
Br contains only valid payments, is universally known, and is never revised. The worst malicious
users might do, even if they had the ability and the time to perfectly coordinate their actions, is
to slightly delay some payments made by honest users to become effective.

Another possible source of ambiguity in Bitcoin is the following. A user making a payment P ,
and not seeing P appearing in the next block or two, does not quite know if he is free to use the
amount of money he tendered in P or not. Bitcoin allows such a user to issue a cancellation of P ,
but in principle neither P nor its cancellation may appear in the next few blocks, in which case the
user would find himself in a bind. Algorand eliminates this ambiguity too. Recall that each payment
P is marked with the round r in which it is made. Even the basic version of Algorand guarantees
that, with reasonably high probability, P will appear in PAY r. If it does not (“courtesy” of the
malicious users), then the payer knows that P will never appear in a future block. Thus, he can
decide to use the money in a different way or to reissue the payment with the next round number.

In sum, in Algorand all decisions are final, and safely so.

Acceptable Failure Probability To analyze the security of our system, we need to specify the
probability, F , with which we are willing to accept that the system fails. As in the case of the
output length of the cryptographic hash function H, also F is a parameter. But, as in that case,
we find it useful to set F to a concrete value, so as to get a more intuitive grasp of the fact that it
is indeed possible, in Algorand, to enjoy simultaneously sufficient security and sufficient efficiency.
In this paper, we set

F = 10−12 .

This probability is actually less than one in a trillion, and we believe it to be adequate in our
application. Let us emphasize that 10−12 is not the probability with which the Adversary can forge
our payments —even though the probability of that happening may be acceptable too! Recall that
all payments are digitally signed, and thus the probability of forging a payment is way lower than

10

10−12, and is in fact essentially 0, if the proper digital signatures are used. The catastrophic event
that we are willing to tolerate with probability F is that Algorand’s blockchain forks.

Notice that, with our setting of F and 1-minute long rounds, a fork is expected to occur in
Algorand’s blockchain as infrequently as once in 1.87 billion years.

If this is not satisfactory, one can clearly modify Algorand, using prior techniques, so as to
report and recover from a fork, which we omit doing in this paper. A more cautious user than us
may thus wait that a payment P made to him becomes a few blocks deep before relying on P , so
as to reduce the probability that P may “disappear” to 10−24, or even lower.

Ideal and Realistic Objectives Assume for a moment that all users in the system are honest,
participate to the prescribed protocol, and act in a timely fashion. Then, every round could have
length π, that is, the upperbound to message propagation. Indeed, round r could start at time
r ·π, end before time (r+ 1) ·π, and generate the payset PAY r as follows. At time r ·π, every user
starts propagating every new payment he wishes to make. Since all users are honest, the set of all
such payments, PAY r, is a valid payset. Moreover, by time (r+ 1) · π, every user receives all such
payments and thus locally computes PAY r.

In this idyllic setting, the following two crucial properties hold:

1. Perfect Correctness. Every PAY r is a valid payset on which all honest users agree.

2. Inclusiveness 1. Each PAY r includes, with probability 1, all round-r payments of honest users.

In a realistic setting, however, malicious users may try hard to violate either property.
To be sure, malicious users cannot fake any round-r payment of an honest user, because

they cannot forge his digital signatures. However, they can propagate their own, invalid round-
r payments. Yet, these payments will not fool honest users, who check them against the round
information in their possession: namely, the current public keys PKr and the previous status Sr−1.
Thus, such invalid payments will not enter the official payset PAY r computed by an honest user.

A more subtle way for a malicious user M to invalidate the correctness property consists of
choosing a valid round-r payment PM and ensure that only some, but not all, honest users include
it in their individually computed PAY r. For instance, M may start propagating PM just very close
to the end of round r, counting on the fact that honest users ignore any alleged round-r payments
received after time (r + 1) · π. By starting to propagate PM deliberately late, M guarantees that
it will be received on time by some but not all honest users. Accordingly, PAY r will contain
PM according to some good users, but not others. Similarly, user M could choose two distinct
payments, PM and P ′M , that are valid individually, but not together (because the sum of their
amounts exceeds the money owned by M), and cause some honest users to include in PAY r only
PM , others only P ′M , and others yet none of them.

Of course, guaranteeing perfect correctness alone is trivial: all honest users always chose the
official payset PAY r to be empty. But in this case, the system would have inclusiveness 0.
Unfortunately, guaranteeing perfect correctness and inclusiveness 1 seems to be hard in the presence
of malicious users. Algorand thus adopts a more realistic objective. Informally, letting h, h > 1/2,
denote the percentage of users that are honest, the goal of the (basic version of) Algorand is

Guaranteeing, with overwhelming probability, perfect correctness and inclusiveness h.

11

Privileging correctness over inclusiveness seems the right choice. After all, payments not
processed in one round can be processed in the next one. But one cannot afford that different
honest users hold different opinions about which payments have been made, and thus about how
much money each user owns.

Reliance on Verifiers At the highest level, Algorand delegates choosing the official payset
PAY r, among all paysets of round r, to a selected set of verifiers, who act with power in such a
choice. Algorand also specifies other important aspects, such as how to guarantee that the right
information reaches the selected verifiers, the process by which they reach their decisions, and the
way in which their decisions are communicated to all users in the system. But verifier selection is
the first crucial aspect of Algorand’s overall strategy.

The simplest way of selecting a set of verifiers is of course to choose a single outside entity, V ,
to act as the sole verifier. But of course, such a choice would yield a fully centralized system, with
all its drawbacks. A better and still simple solution would be to rely on a fixed set of verifiers,
V1, . . . , Vn. Yet, no matter what mechanism they use to choose and publicize the official paysets,
this approach continues to suffer from at least the following two drawbacks:

1. It makes the system vulnerable to cyber attacks. Indeed, a sufficiently resourceful and
determined attacker might eventually gain control of a majority of a small set of verifiers.

2. It makes the system subject to internal corruption. It is well-known that “continual power
corrupts” and an all-powerful and never-changing committee of verifiers is no exception.

Algorand relies on an ever changing set of verifiers.
Before proceeding, let us highlight the properties that we deem important to satisfy for verifier-

selection mechanism. (We wish to acknowledge that other properties can be deemed sufficient,
and in fact describe some alternative choices of properties and corresponding mechanisms in
Appendix B.)

Main Desiderata in Verifier Selection We believe that a good mechanism should, for every
round, efficiently select only few verifiers, at random from the set of all users, and in a way that
is both unpredictable until the very last moment, and universally clear. We call such a mechanism
cryptographic sortition.

Selecting a small set of round-r verifiers is crucial for the efficiency of the overall system. In
particular, it makes it feasible for the verifiers to communicate intensively with each other —e.g.,
by having each verifier send a separate message to all other verifiers.

Selecting the verifiers at random is also critical. It guarantees that, if the majority of the
potential verifiers are honest, then we can expect that the majority of the round-r verifiers are
honest too.

Selecting the verifiers from a very large set of potential verifiers may actually suffice, and
Algorand can certainly be used in this way. However, having all potential verifiers be users
themselves, and actually have the set of all potential verifiers coincide with the set of all users,
not only is in keeping with a decentralized and democratic system, but is also very secure. Indeed,
it would be essentially impossible for someone to corrupt a majority of all users.

Selecting the verifiers of a round while maintaining their unpredictability up to the last moment
is also important. Notice that randomly selecting the verifiers does not suffice to guarantee such
unpredictability. If the few verifiers of a given round r were randomly selected but made known

12

long in advance, then there would be plenty of time for the Adversary to attack and gain control
of all of them without violating the Honest Majority of Users assumption. By contrast, selecting
the round-r verifiers only at, say, round r − 1 prevents the Adversary to gain control of them in
time to be harmful. One round later, a totally new random set of verifiers will be selected.

Selecting verifiers in a universally clear way is also important. If it is desirable that the round-r
verifiers remain unpredictable up to very close to round r, then, since they must collectively decide
the official payset PAY r, it is crucial that their identities become known by at least round r.

Finally, none of these desiderata would matter if the verifier selection process were too slow.
Fortunately, in Algorand, this process requires no interaction and is computationally very efficient.

Verifier Selection at a High Level Let R be a sufficiently long string, randomly and
independently chosen in round r, so as to become immediately known to all users. Then, in
accordance with the above desiderata, we can select a total set of n verifiers, TV r, from the set of
all current users, by means of the following process.

Let X1, X2, . . . , Xu be the lexicographically ordered sequence of all keys in PKr (which, by the
temporary One-Key-Per-User assumption, coincides with the set of all users at the start of round
r). Then, dlog ue bits suffice to uniquely identify a key in PKr. Accordingly, the first dlog ue bits
of R identify the first verifier in TV r. (Should these bits identify a number higher than u, then
they are discarded, and the next dlog ue bits are considered instead.) The following dlog ue bits of
R identify the second chosen verifier (if different from the one already chosen, else these bits too
are discarded). And so on, until all n verifiers of TV r have been selected.

We refer to this process as the natural mechanism (with string R and set PKr). In symbols,

TV r R←− PKr .

Actually, the natural mechanism not only randomly selects TV r from PKr, but also a random
ordering ρr of TV r: in symbols,

(ρr, TV r)
R←− PKr .

But: Who chooses R?
Algorand’s answer is simple: no one. Each string R is algorithmically generated, by applying

the cryptographic hash function H to an unambiguously defined input relative to round r. In the
simplest instance, this input would be r itself. Namely, we could consider selecting the verifier set
TV r and a random ordering ρr of TV r as follows:

(ρr, TV r)
H(r)←− PKr .

Indeed, in our model, H (r) is a 256-bit random string.6 Furthermore, H (1) , . . . ,H (r) , . . ., are
independent random strings.

A problem with running the natural algorithm with string H (r) to select the verifier set TV r

is that the sequence TV r, TV r+1, . . ., is, yes, randomly selected, but also easy to predict, because
it can be computed in its entirety at the start of the system, that is, in round 0.

6The natural algorithm may need more than 256 bits to select a set of verifiers, but one could always stretch H (r)
into a much longer pseudo-random bit sequence of high quality. In fact, the natural algorithm may take all the blocks
of bits it needs from the sequence H (r) ◦H (r, 1) ◦H (r, 2) ◦ · · · , where “◦” denotes the concatenation operator.

13

To guarantee the unpredictability of future verifiers, we may choose

(ρr, TV r)
H(Qr−1)
←− PKr ,

where Qr−1 is a quantity universally known at round r − 1, but hard to predict before then.
Assume for a moment that we have already found such a proper quantity Qr−1, and let us start

discussing what the verifiers in TV r should do after being so selected.

Essential Round Structure Inductively, by the end of round r − 1, all users know the status
Sr−1 and the set of public keys PKr. They also know the set of round-r verifiers TV r, since we
have promised that TV r is algorithmically computed from a quantity Qr−1 universally known by
the end of round r − 1.

The goal of round r is to establish, with the help of the round-r verifiers and in a way clear to
all users, the new official payset PAY r and the new quantity Qr. Then, every user computes, on
his own, the new status Sr, the new set of verifiers TV r+1, and the new set of public keys PKr+1.7

Round r starts by having the users who wish to make payments propagate their payments.
Thus, assuming that the round starts conventionally at time 0, by our network assumption this
propagation can be completed by time π, after which time every one is instructed to ignore all
round-r payments. We say “can be completed” because, as we discussed, malicious users may
purposely start propagating their round-r payments very late, in an effort to generate confusion
about PAY r. Accordingly, the only guarantee we have is that, by time π, all users have received
the round-r payments made by honest payers. Some round-r payments made by malicious payers,
however, may have been received by some, but not all, honest users.

To cope with this possibility, each round-r verifier X ∈ TV r compiles his own list of valid
round- r payments, PAY r

X , comprising, for each user Y from which he has received a round-r
payment P (by time π), a maximal set of valid round-r payments of Y . Of course, such a maximal
set of valid payments coincides with all round-r payments of Y , if user Y is honest. And again, of
course, due to the discussed behavior of the malicious users, PAY r

X and PAY r
Z may differ if X and

Z are different round-r verifiers.
To reconcile their possibly different paysets PAY r

X into the single official payset PAY r, the
round-r verifiers rely on the following variant of a well-known type of protocol.

Certified Byzantine Agreement Informally, a traditional Byzantine agreement (BA) protocol
consists of a communication protocol, in which every party i —out a total of n known parties—
has an initial value vi consisting of an arbitrary string. Calling (as in our case) a player honest if he
follows all his prescribed instructions, and malicious otherwise, a BA protocol guarantees that, no
matter what the malicious players might do, upon termination the following two conditions hold:

1. Every honest player X outputs the same value OUT (possibly the special null value ⊥), and

2. If all honest players start with the same initial value v, then OUT = v.

7Indeed, recall that PKr+1 comprises all the keys already in PKr together with the new public keys that appear
for the first time, as payees, in at least one payment in PAY r. Under the current one-user-one-key assumption, the
set PK(r+1) \PKr (i.e., the set PK(r+1) “minus” the set PKr) consists of the users who have just joined the system
by generating a new public key X (together with its corresponding secret key) and received a payment via X.

14

We actually rely on a variant of Byzantine agreement, which we term certified Byzantine agreement
(CBA). Informally, a CBA protocol satisfies the same property 2 defined above, and property 1
augmented as follows:

1′. Every honest player X outputs the same value OUT (possibly the special null value ⊥), together
with a matching certificate, CERTX , proving that OUT is indeed the output of all honest
players.

Note that the proofs CERTX and CERTY may be different, for different honest players X and Y ,
but each one of them proves that OUT is the correct unique output of all honest players.

Certified Byzantine agreement is more precisely defined in Appendix C.1, where we also provide
two very different CBA protocols: CBA′ and CBA?.

Round Leaders After computing his own set PAY r
X , each X ∈ TV r, together with the

other round-r verifiers, executes a pre-specified CBA protocol with initial value PAY r
X . Upon

termination, therefore, all honest verifiers will output the same value v, but such a value v may be
the null output ⊥, rather than a set of valid payments! In fact, all honest players may output ⊥
when they start with initial values that are all different. In our case, therefore, since the malicious
players can easily ensure that the initial values PAY r

X are different, they can easily ensure that the
final output is the null value ⊥, rather than a set of valid round-r payments PAY r. This being the
case, even a few malicious players may force the protocol described so far to have inclusiveness 0.

To avoid this pitfall, we shall rely, for each round r, on the round leader, `r. Ideally, `r is
a randomly selected user. (Since the verifiers are themselves randomly selected, he could be a
randomly selected verifier.) Also ideally, all verifiers should know who `r is. Accordingly, after
determining a proper quantity Qr−1, we could first compute

(ρr, TV r)
H(Qr−1)
←− PKr ,

and then set `r to be the first verifier in TV r according to ρr. That is, augmenting our notation,

(`r, TV r)
H(Qr−1)
←− PKr .

The role of the round leader is the following. After all round-r payers propagate (or more simply
send to `r) their round-r payments, `r individually computes his own list PAY r

`r of valid payments.
If `r is honest, PAY r

`r includes, for each round-r payee Y , a maximal set of valid round-r payments
of Y (and thus all valid payments of Y , if Y is honest). After computing PAY r

`r , `r sends (or
propagates) it to all round-r verifiers, which then run the CBA protocol using, as their respective
initial values, the values they actually received from `r.

Accordingly, when `r is honest, the initial value of each honest verifier X is payset PAY r
`r .

Thus, upon termination of the CBA protocol, no matter what the malicious verifiers might do,
each honest verifier X outputs PAY`r together with a certificate CERTX proving that PAY r

`r is
the output of all honest verifiers of round r.

At this point all that remains to do is for each honest verifier X to propagate the pair
(PAY`r , CERTX). Within time π, therefore, every user provably learns (possibly with multiple
proofs) that the set PAY`r is the correct unique output of all honest verifiers of round r, and thus
adopts it as the set of valid payment of round r. That is, every user sets PAY r = PAY`r .

Thus,

15

If each round leader is selected at random among all users,
and if the honest users are a fraction h of all users,

then the system has inclusiveness h.

This inclusiveness can actually be increased by relying on multiple round leaders.8

Notice that, although in principle there might be multiple propagations of PAY r
` (i.e., one for

each different proof CERTX), all of them can be merged into a single propagation. In fact, it
suffices to modify the propagation protocol as follows: informally, a user Y forwards to all his
neighbors only the first set-proof pair (OUT,CERTX) he receives, and ignores all subsequent ones,
whether identical to the first pair or with a different second component. Any such pair suffices to
prove that OUT is indeed the correct unique output of all honest round-r verifiers.

Difficulties in Leader-and-Verifiers Selection Let us turn our attention to finding a proper
quantity Qr−1 to use in the natural mechanism for selecting TV r and `r. Recall that we also wish
Qr−1 to be universally known at round r − 1 and unpredictable before then. Thus, at first glance,
we could choose Qr−1 to coincide with PAY r−1. After all, it should be hard in —say— round
r − 10 to know what the official payset of round r − 1 will be. Accordingly, we could select `r and
TV r via (the trivially modified) natural mechanism as follows:

(`r, TV r)
H(PAY r−1)
←− PKr .

However, a little effort shows that, due to the presence of malicious users, this selection mechanism
is insecure.9 A little more effort shows that letting Qr coincide with PKr, Sr−1, Br−1, H(Br−1),
or myriads of combinations of these and other quantities manipulatable by malicious players, also
yields an insecure system.

Cryptographic Sortition at Last! Let us finally describe a mechanism for selecting leaders
and verifiers in a round so as to satisfy our discussed main desiderata. We do so by describing, in
three stages, a proper sequence of quantities Q = Q0, Q1, . . . such that, selecting

(`r, TV r)
H(Qr)←− PKr

by (a) first computing (ρr, TV r)
H(Qr)←− PKr and then

(b) choosing the `r to be the first verifier in TV r according to ρr,

8For instance, Algorand may use three round leaders, `r1, `r2 and `r3. Each leader `ri sends to the verifiers in TV r

his own payset, PAY r
`ri

. Denote by PAY r
`ri

[X] the first payset that a verifier X actually receives from leader `i, where

PAY r
`ri

[X] = ∅ if X receives no payset form `i. Then, in the following CBA protocol, each verifier X sets his initial

value to be PAY r
X , if there exists two different leaders `i and `j such that PAY r

`ri
[X] = PAY r

`rj
[X] = PAY r

X , and ∅
otherwise. Note that the leaders `ri and `rj are both honest, then PAY`ri

= PAY`rj
, PAY`ri

and PAY`rj
contain all

round-r payments of honest users, and PAY`ri
[X] = PAY`rj

[X] for all verifiers X. Accordingly, upon termination of
the CBA protocol, the official payset PAY r will include all round-r payments of honest users, if the majority of the
leaders is honest, an event whose probability is greater than h.

9Assume that the leader of round r − 1, `r−1 is malicious. Accordingly, he could select PAY r−1 in any way he
wants. In particular, among all payments he sees propagated in round r − 1 (or can generate himself), `r−1 selects

one, P ′, such that, computing (`r, TV r)
H({P ′})←− PKr, `r is also a malicious user. If the malicious users are —say—

10% of all users, then after a mere 10 trials such a payment P ′ will be found. Thus, by digitally signing {P ′} and
sending it to the verifiers of round r − 1, `r−1 ensures that PAY r−1 = {P ′}, and thus that the leader of the next
round, `r, is also malicious. If all malicious leaders operate this way, the inclusiveness of the system would be 0.

16

we can be sure that, no matter what the malicious players might do,

(a′) TV r is a randomly selected set of n users and
(b′) `r is a randomly selected verifier in TV r.10

Stage 1. Each Qr is inductively constructed, via the previous leader `r−1, as follows.
Let Q0 be an initially chosen, random, 256-bit string. Then, define the following chain

Q1 = H
(
SIG`1

(
Q0
)
, 0
)
.

Q2 = H
(
SIG`2

(
Q1
)
, 1
)
.

Q3 = H
(
SIG`3

(
Q2
)
, 2
)
.

Etc.
That is, the quantity Qr−1 is used by the natural mechanism to determine TV r and `r, and then the
signature of `r of Qr−1, hashed together with the sequence of the previous quantities, determines
the new quantity Qr.

Note that, due to the guaranteed uniqueness property of the underlying digital signature scheme,
the signature SIG`r

(
Qr−1) is uniquely determined by Qr−1. Thus, even if the leader `r were

malicious, he could not “shop around”, among a set of multiple valid signatures he may have for
Qr−1, for one that lets him de facto choose the quantity Qr in a way that is convenient to him.

Also note that, to generate each quantity Qr, the input provided to the random oracle H has
never been provided to H to generate another quantity Qj . In fact, each input provided to the
random oracle H is a pair, whose second entry is an ever increasing counter. Thus, Qr is a randomly
and independently chosen 256-bit string no matter how a malicious `r might choose his public key.11

Finally note that the randomness of each Qr−1, coupled with the fact the natural mechanism,
run with string Qr−1, guarantees that `r is randomly chosen, implies that, under the Majority of
Honest Users Assumption,

`r is an honest user with probability at least 1/2.

In turn, since an honest leader `r will not divulge his signature SIG`r(Qr−1) before round r, the
above guarantee implies that the malicious users can predict Qr in round r − 1 essentially with
probability at most 1/2.

Extending this reasoning, one can see that the malicious players cannot, at a round r′, predict
the quantity Qr of a future round r with probability substantially greater than 2−(r−r

′). In fact,
for their prediction to be correct, they must either correctly predict a random 256-bit string (which
will happen with absolutely negligible probability), or be so lucky that all r−r′ leaders `r

′+1, . . . , `r

are malicious (which will happen with probability 2−(r−r
′)), so that they can compute and share

at round r′ their digital signatures SIG`r′+1(Qr′), . . . , SIG`r(Qr−1).

10Note that randomly selecting TV r from PKr and then letting the leader ` be the lexicographically smallest verifier
in TV r does not work. This is so because malicious users could always choose their keys to be lexicographically very
very small, so that, no matter what the actually chosen verifier set TV r may be, the leader will always be a malicious
user. Since a malicious leader could always choose the set of payments PAY r to be empty, the inclusiveness of the
resulting system would be essentially 0.

11Without this second, ever-increasing entry, this property might not hold, or might need a more careful proof.
For instance, a malicious `r might not choose his public key by honestly running the key generator G, but in a way
guaranteeing him the following strange property: SIG`r (x) = SIG`r (y) for all strings x and y. If he succeeded, then
Qr = Qr+1 = · · · , and thus `r+1 = `r+2 = · · · , opening the possibility that a malicious user be the leader for all future
rounds. Note that this strange property is not ruled out by the guaranteed uniqueness property of the underlying
digital signature scheme. But it is ruled out by the retrievability property. Of course, there may be further, equally
dangerous properties to guard against.

17

Thus, at each round r, the future quantity Qr+40, and thus the verifier set TV r+40, can be
predicted exactly with probability at most 2−40; and with complementary probability, the only
knowledge about TV r+40 available to the malicious players is that it consists of n randomly
selected users. Notice that the probability 2−40 is actually lower than 10−12, our acceptable failure
probability F . Thus, for our basic version of Algorand to be secure, it is important to assume
that the temporary assumption 2 mentioned at the start of Section 5, Longer Corruption Time,
actually holds with k = 40. Else, the Adversary may, with probability less than F , correctly learn
the quantity Qr at round r− 39, immediately compute the verifier set TV r, immediately attack all
of its n members, gain control of all of them at the start of round r, and thus instruct them to act
so as to force a fork in Algorand’s blockchain.

The Longer Corruption Time assumption with k = 40 may be reasonable. After all, with 1-
minute long rounds, 40 minutes are hardly enough to totally corrupt n/2 honest users. (Indeed,
since TV r has n members and it is randomly selected, at least half of them are expected to be
honest.) Nonetheless, as already mentioned, we shall reduce k to 1 in the version of Algorand of
Subsection 6.2.

Stage 2. A problem, however, exists. Namely, a malicious leader `r may refuse to produce the
signature SIG`r

(
Qr−1) required to compute Qr. In this case, to prevent that the generation of

the sequence of quantities Q gets stuck, the string SIG`r
(
Qr−1) is replaced by —say— the value

Q0 + r. That is, Q is so defined.

Q1 = H
(
SIG`1

(
Q0
)
, 0
)

if `1 reveals SIG`1
(
Q0
)
. Else, Q1 = H

(
Q0 + 1, 0

)
Q2 = H

(
SIG`2

(
Q1
)
, 1
)

if `2 reveals SIG`1
(
Q1
)
. Else, Q2 = H

(
Q0 + 2, 1

)
Q3 = H

(
SIG`3

(
Q2
)
, 2
)

if `3 reveals SIG`3
(
Q2
)
. Else, Q3 = H

(
Q0 + 3, 2

)
Etc.

Let us quickly analyze this new sequence Q. A malicious leader `r has certainly the opportunity
(ignoring all financial disincentives discussed in Section 5.5) to cause the official payset PAY r to be
empty. In addition, by revealing the required signature SIG`r

(
Qr−1) or allowing it to be replaced

by the value Q0+r, he has essentially two shots at selecting the next verifier set TV r+1, its ordering
ρr+1, and thus the next leader `r+1. Thus, he has a second chance of forcing `r+1 to be a malicious
player. Under both chances available to him, however, TV r+1, ρr+1, `r+1 will be randomly selected.
Thus, if in both of these “independent trials” the new leader is honest, then there is nothing that
`r could do to prevent `r+1 from being honest, and thus for Qr+1 to be unpredictable in round r.
We conclude that, when the percentage of honest users is h, then the new leader will be honest
with probability at least h2, when the current leader is malicious, and with probability exactly h,
when the current leader is honest. Since an honest leader `r ensures that PAY r contains all the
round-r payments made by honest users, we conclude that

the current selection mechanism has inclusiveness at least h2.

Thus, if h > 1/2 or h > 3/4, then the corresponding inclusiveness is at least 1/4; and if h > 3/4,
then the corresponding inclusiveness is at least 9/16.

Let us now clarify how exactly the round-r leader `r “reveals” SIG`r
(
Qr−1). Of course,

propagating SIG`r
(
Qr−1) does not work. (Indeed, once again, a malicious `r may start propagating

it so late that only some of the honest users will see it. Accordingly, different honest users will hold
different views about the quantity Qr+1, and thus about the next verifier set, leader, etc.)

18

To avoid that a malicious leader `r may “tamper” with revealing SIG`r
(
Qr−1), we again rely on

certified Byzantine agreement. For the sake of efficiency, we choose to leverage the same execution
of the CBA protocol, used to determine PAY r, to determine also SIG`r

(
Qr−1). Specifically, after

the verifier set TV r and the leader `r have been selected, and after he has already compiled his own
set of valid round-r payments PAY r

`r , `r does not just send (or propagate) to the round-r verifiers
the single item PAY r

`r , but the pair (
PAY r

`r , SIG`r
(
Qr−1)) .

The round-r verifiers then run the CBA protocol, each verifier using as his initial value the pair
he actually received from `r. Upon termination, an honest verifier X ∈ TV r propagates the
computed result OUT and its corresponding certificate CERTX , where OUT is the same for all
honest verifiers. Thus, all users will have received OUT in certified form. If OUT is a pair whose
second component is SIG`r(Qr−1), then all users set

Qr = H
(
SIG`r

(
Qr−1) , r − 1

)
.

Else, all users set
Qr = H

(
Q0 + r, r − 1

)
.

In particular, therefore, Qr = H
(
Q0 + r, r − 1

)
when OUT = ⊥. The first component of OUT is

used as previously discussed in order to determine PAY r.

Stage 3. However, one more stage is needed due to one last source of insecurity. Namely, even
using the last defined quantity Qr−1, and computing

(`r, TV r)
H(Qr−1)
←− PKr ,

the malicious players can ensure that the inclusiveness of the system is 0. This is so because,
although our lastly chosen quantities Qr−1 prevent the malicious players from (significantly)
manipulating the string H(Qr) used by the natural mechanism to choose `r and TV r from PKr,
the malicious players can manipulate the set PKr (better said, they can choose the new public
keys that will be added to PKr−1 to yield PKr) so as to ensure that a malicious leader `r will be
selected.12

To prevent this last manipulation, we randomly choose the leader and the verifiers of round r
not from the most recent set of public keys, PKr, but from that of a few rounds before:

(`r, TV r)
H(Qr−1)
←− PKr−k ,

where k is a sufficiently large integer —e.g., k = 100. Let us emphasize that selecting `r and TV r

among the users of round r − k does not mean that TV r is predictable at round r − k.

12Assume that the leader of round r − 1, `r−1, is malicious. Then, he may honestly sign Qr−1 and reveal
SIG`r−1(Qr−1), but tamper with PAY r and the set of public keys PKr as follows. Recall that PKr consists
of the union of PKr−1, the set of keys at the start of round r− 1, and the set of new public keys, that is, those that
appear for the first time as payees in PAY r−1. Leader `r−1 keeps on choosing a set of valid round-(r − 1) payments
P ′, from malicious payers to newly generated malicious keys, so as to compute a set of new keys PK′, and then

computing (`r, TV r)
H(Qr−1)←− PKr ∪PK′ until `r−1 is malicious. Once he finds such a set of payments P ′, he sends it

to all verifiers in TV r−1 as they were the only payments he saw in round r−1. (If he wants, he can actually have the
malicious players properly propagate PK′, so as to legitimize his actions.) By so doing, therefore, `r−1 ensures that
PAY r−1 = P ′ and that the next leader is malicious too. If all malicious leaders act this way, then the inclusiveness
of the system would be 0.

19

Quick Summary In sum, the high-level organization of a round r is intuitively as follows: (a) the
users propagate their round-r payments; (b) the round-r verifiers and the round leader are selected,
based on the previous quantity Qr−1, in a way that ensures that the majority of the verifiers are
honest and that the round leader is honest with good probability; (c) the round leader sends to
all round-r verifiers a pair consisting of a list of valid round-r payments chosen and authenticated
by him, and his own digital signature SIG`

(
Qr−1); (d) the verifiers reach certified Byzantine

agreement on the received pair, so as to output a certified common value v, which coincides with
the original pair sent by `, if he was honest; (e) all honest verifiers propagate (indeed, via a single,
coalesced propagation) the certified value v; (f) all users compute from the certified v both the set
of payments PAY r and the quantity Qr.

Since the certified value v is uniquely determined, so is PAY r. Since PAY r is a maximal set
of valid round-r payments whenever `r is honest; and since `r is honest with good probability, the
system has essentially perfect correctness and good inclusiveness. Let us now see a round in detail
in the basic version of Algorand.

5.3 Precise Description

Basic Quantities. We shall use the following basic quantities:

• h, the percentage of honest users.

(Quantity h is empirically determined, but assumed to be high: e.g., h =3/4, 2/3, or 60%.)

• F , the acceptable failure probability, set to 10−12, as already mentioned.

• n and integer k, respectively the number of verifiers in a round and a security parameter.

(These are “dependent” parameters. Indeed, they are chosen so that the probability that
something goes wrong in a round is smaller than F in a system whose honest percentage is h.)

Protocol Round(r)

Initial Comment. After ending Round(r−1), a user starts executing Round(r) already knowing
PKr, Sr, PAY r−1, Qr−1, and the block Br−1.

Communication Step 1. Each user X ∈ PKr

• Computes (ρr, TV r)
H(Qr)←− PKr−k.

• Computes `r, the first verifier in TV r according to ρr.

• Propagates his own set of valid round-r payments, if any.13

Communication Step 2. The leader `r

• Computes a maximal payset PAY r
`r from the round-r payments he receives by time π.

13To minimize message traffic, during the propagation of a message m supposed to have a given form, a user should
not forward m to his neighbors, if m does not have the required form. Thus a user should not forward an invalid
round-r payment.

20

• Propagates SIG`r
(
PAY r

`r , SIG`r(Qr−1)
)

to all verifiers in TV r
PK .14

Communication Step 3. Each verifier X ∈ TV r

• Sets vi = σi, if σi is the first string he receives of the form SIG`r
(
PAY, SIG`r(Qr−1)

)
,

where PAY is a round-r payset.

Else, sets vi = ⊥.

• Executes the CBA protocol with initial input vi, so as to output a value OUT r and a
matching certificate CERT r

X .

• Propagates the “verdict” (OUT r, CERT r
X).

Final Computation Step. Each user U , upon receiving the first syntactically correct verdict
(OUT r, CERT r

X) in the previous Step 3, acts as follows.

• If OUT r = ⊥,

then U sets PAY r = ∅ and Qr = H
(
Q0 + r, r − 1

)
.

Else, letting OUT r = SIG`r
(
PAY, SIG`r

(
Qr−1)),

U sets PAY r = PAY and Qr = H
(
SIG`r(Qr−1), r − 1

)
.

• U sets the new block to be Br =
(
r, PAY r, H

(
Br−1));

• U sets the new proven block to be Br = (Br, CERT r
X), and considers round r completed.

Final Comment. While PAY r and the block Br are the same for every user, the certificate
CERT r (and thus the proven block Br) may be different for different users,15 yet these
certificates (and proven blocks) are functionally equivalent. That is, every user presented with
any proven block Br can rest assured that Br is the only correct block of round r.

5.4 Basic Performance Analysis

In Algorand, only the time taken by communication matters: the time taken by internal
computation is negligible (quite differently from protocols based on proof-of-work) and will be
ignored.

We distinguish two measures of performance: latency, the time taken to execute a round, and
throughput, the time between the determination of two consecutive official paysets.

Latency Analysis The backbone of Round(r), that is, Round(r) except for the CBA
subroutine, consists of 3 communication steps. (Step 4 involves only internal computation.)

Step 1 essentially consists of the propagation of the individual payments made in the round.
Step 2 essentially consists of the propagation of the official payset PAY r to just TV r.
Step 3 essentially consists of the “consolidated” propagation to all users of (OUT r, CERT r),

whereOUT r is either PAY r or⊥, and CERT r consists, as we shall see, of a set of verifier signatures.

14Propagation of a message m to a subset S of the users can be implemented by propagating m to all users. In
principle, however, one can design a more efficient protocol for propagating m to just S.

15This is so because the certificates CERTX produced by different verifiers X in our certified Byzantine agreement
protocol CBA may not be the same.

21

Accordingly, in absolute terms, the latency of the backbone of Round(r) is quite reasonable.
In fact, the time needed for propagation is logarithmic in the number of the relevant users, which
is at most a few billions.

Moreover, this latency is quite reasonable also in relative terms. In a sense, a fully decentralized
payment system must always include the propagation to all users of (i) the payments in some
time interval and (ii) the publicly recognized set payments in that time interval. To this basic
communication, the backbone of Round(r) only adds, in Step 2, the propagation of a single payset
to few verifiers.

Let us now consider the latency added by the single call to the chosen CBA protocol. This
additional latency clearly depends on the number of the verifiers, n, the percentage of honest users,
h, the chosen failure probability, F , and the chosen CBA protocol. Let us discuss this latency for
two, and dramatically different, CBA protocols.

• CBA′.

CBA′ is essentially the Byzantine agreement protocol of Dolev and Strong [17], a deterministic
protocol in which all messages are digitally signed.

To turn their BA protocol into a CBA protocol, it suffices to (1) include, in each message m, the
number of the communication stage and the execution in which m has been sent; and (2) have
each honest player X output not only the traditional value OUT , but also a matching certificate
CERTX consisting of all the digital signatures received by X throughout the execution.

The latency of the so modified protocol is as follows.

CBA′ requires the number of malicious players to be less that n/2. When there are t malicious
players, t < n/2, it requires t+ 1 sequential stages of n-to-n communication.16

• CBA?.

This is a new CBA protocol, presented in Appendix C.3. Its latency is as follows.

CBA? requires the number of honest players to be greater than 2n/3; but only 3 sequential stages
of n-to-n communication, if the round leader is honest, and 6 (expected) such stages otherwise.
Moreover, except for the first two stages, every player sends a single bit to each other player.

(Protocol CBA? is conceptually simple. It is an efficient adaptation of the basic BA protocol
of Feldman and Micali [22], which indeed required a 2/3 honest majority, an expected 18 waves
of n-to-n communication, and no cryptographic authentication, but was very complex. Other
complex BA protocols, with an expected constant number of n-to-n communication waves,
relying on cryptographic authentication, but requiring only a simple honest majority, have
been discovered by Katz and Koo [23]. Also their BA protocols can be adapted so as to work
efficiently within Algorand and reduce the number n of verifiers needed. But adapting the
protocol of [22] is simpler and suffices for this version of this paper.

The different honest majorities required by these CBA protocols call for different choices of n. For
example, if the percentage of honest users is 75% and we wish that each verifier set has the required
majority with probability at least 1− 1012, then n must be about 50 for Classical CBS and about
500 for CBA?. Accordingly, CBA′ requires 26 50-to-50 exchanges, and CBA? requires three (if the
leader is honest, and expected 6 otherwise) waves 500-to-500 message exchanges.

16In such a stage, each verifier i sends a messages mij to each verifier j.

22

Since the latency of a protocol is also affected by the length of the messages exchanged, let us
thus emphasize that, in both CBA′ and CBA?, only the initial messages may be long, since they
consist of paysets. All others essentially consist of hashed values and verifier signatures, and are
quite short.

Which of these CBA protocols has the best latency performance is not clear (and may ultimately
depend on the very specifics of the underlying communication network). Initial simulations indicate
that, given the size of the envisaged messages, the envisaged number of verifiers, and the envisaged
length of a round, as it is often “the number of sequential waves matters more than bandwidth”
and that using CBA? provides the better performance [25].

Throughput Analysis In the basic version of Algorand, latency equals throughput. Indeed, the
users start working on PAY r+1 only after PAY r has been determined, with just a minor overlap at
the round transition. Such minor overlap occurs because some users may see slightly earlier than
others that a round has terminated (either because the final propagated message reaches them
earlier, or because the chosen CBA protocol is CBA?, which allows for staggered termination).
These users will thus start working on the next round ahead of the others, without any problems.

5.5 Incentives and Disincentives

In Bitcoin, there are two main sources of envisaged rewards. The first is the reward offered for
including a given payment P in a block. The second is the reward earned for solving the complex
“cryptographic riddle” necessary to generate a valid block. In Algorand, the second form of rewards
is not applicable. One may, however, reward the verifiers and leader of a round with a small
percentage of the amounts of the payments included in the official payset they generate. Such
rewards may be paid automatically, either in an inflationary, in a budget-balanced model, or in a
combination thereof.17

Of course, one may also easily disincentivize maliciousness by automatically imposing fines to
users who provably deviate from their prescribed instructions in the protocol.18

6 Improvements

6.1 Optimizing Throughput

Maurice Herlihy has pointed out that throughput in Algorand can be significantly improved by
pipelining.

17Automatically paying a reward wX to a user X in a round r, essentially means that, in status Sr, the amount
wX is added to the amount a

(r)
X that X would have had without this reward.

In an inflationary model, such reward wX is not offset by any reduction in the amounts of money owned by other
users. In a budget-balanced model, the reward wX may, for instance, come from the payer Y of a given payment
P ∈ PAY r, in which case, in the status Sr, a

(r)
X is automatically increased by wX , while a

(r)
Y is automatically

decreased by wX .
18For instance, assume that a malicious leader `r, in Message Step 2 on Round(r), sends a digitally signed pair to

one verifier, and a different digitally signed pair to another verifier. Then, exposing these contradictory signatures
(e.g., by including them in the output of the CBA protocol) may automatically trigger a fine for `r. The fine may be
as draconian as confiscating all the money ` owns in the system. This is a type of proof of stake [6].

23

6.2 Removing the Longer Corruption Time Assumption

In our description so far, the verifiers of a round r are openly selected from some previous
quantity Qr−1. That is, once Qr−1 becomes known close to round r (and only close to round r,
so as to preserve the unpredictability of the verifiers as much as possible), every user can compute
the entire verifier set TV r.

We wish to point out, however, the existence of an alternative class of selection mechanisms,
which we call secretive. In these mechanisms, an honest user X privately learns in round r − 1
whether he has become a verifier for round r and, if this is the case, provably reveals that he is a
round-r verifier to all users in round r. This shields the verifiers’ identities until the last moment.

The Shielded-Verifier Version of Algorand. Continuing to temporarily assume that there is
a one-to-one correspondence between keys and users in the system, in the basic version of Algorand,
wemodify the verifier-selection mechanism as follows.

Let p ∈ [0, 1]. Then,

A public key X ∈ PKr−k is selected as a verifier for round r if and only if
.H (srX) ≤ p,

where srX = SIGX(r,X,Qr−1), and the quantity Qr−1 is that defined in Round(r).

Let us now argue that this mechanism, inspired by the micro-payment scheme of Micali and
Rivest [26], essentially selects as round-r verifiers a fraction p of the users in PKr−k.

The symbol “.” that precedes the term “H (srX)”, in the middle line of the above italicized
definition, is the decimal point used to mark the start of (in our case) binary expansion of a number
between 0 and 1. Recall that H(srX) is a random 256-bit string. Accordingly, .H(srX) is the binary
expansion of a random, 256-bit number in [0, 1], and thus is less than or equal to p with probability
(essentially) p. Since the value srX is uniquely determined by the public key X, in a way that is
uncontrollable by X or anyone else, a key X ∈ PKr−k becomes a round-r verifier with probability p.

Because the value srX always exists and is unique for each X ∈ PKr−k, the verifier set TV r

so selected is indeed well defined. At the same time, TV r is not publicly known. Indeed, for each
X ∈ PKr−k, srX is unpredictable to anyone but X (when X is honest), and thus X is the only one
to know whether he is a verifier for round r. However, if he so wants, he can convince all users
that he is indeed a round-r verifier by propagating srX .

We may refer to srX as a proof of membership (or non membership) of X in TV r. Indeed, upon
receiving srX , everyone can (a) verify that srX is X’s digital signature of (r,X,Qr−1), (b) compute
H(srX), and (c) verify that the so obtained result is less than or equal to p.

Each round-r verifier X is instructed to propagate his proof srX only at the start of round r. Since
malicious users, who have been secretly selected to be random-r verifiers, may not propagate their
own own proofs of membership in TV r, or may propagate them late, so that different honest users
receive different sets of proofs of membership in TV r, the verifier set TV r is not publickly known
to all users in the system. Rather, each user X knows his own subset, TV r

X , of TV r. We thus show
that, despite this ambiguity, Algorand continues to work with this alternative, verifier-selection
mechanism. There are a few details to consider. The first is leader selection.

Alternative Verifier Selection, Alternative Leader Selection. To ensure that in the above
secretive selection mechanism the expected number of round-r verifiers is n, letting N be the

24

cardinality of PKr−k, one sets p = n/R. (Of course, taking into account statistical fluctuations,
one may want to choose a slightly larger p.)

Selecting p, however, only pins down —and only secretly at that— the set TV r, but not a
random ordering ρr of TV r. Since in the basic version of Algorarnd the leader of round r, `r,
was the first verifier in TV r according to the ordering ρr, we need an alternative way to select `r,
cognizant of the fact that the lexicographically first member of TV r, and other straightforward
ways, fail to work. One way that works is the following:

The leader of round r is the lexicographically first verifier X for which H(srX) is smallest.

This choice ensures that the leader of a round r, `r, is always well defined, but not that he
will ever become publicly known. (Indeed, a malicious verifier Y may never propagate srY .) Let
us thus informally argue that `r will be honest and publicly known with probability at least h,
if the percentage of honest users is h. Recall that the value srX is uniquely determined for each
X ∈ PK(r−k). Then, since H is collision-resilient, with probability essentially 1 there is a bijection
between the users X and the values H(srX). Since the latter values are random, their minimum
will correspond to a random user in PK(r−k). That random user, W (for ”winner”), will be honest
with probability h. Being honest, W timely propagates his own proof of membership in TV r, srW ,
at the start of round r. Thus, all honest users will realize that W is the leader of round r. In fact,
no malicious user M can manufacture a proof P ′ of membership in TV r such that P ′ < H(srW), for
the very good reason that, due to the guaranteed uniqueness of digital signatures, no such proof
P ′ exists. Nor could the malicious users confuse the honest ones about the identity of the leader of
round r, when the winner W is indeed honest, by propagating their proof of membership in TV r

purposely late. In fact their proofs will not yank W from his “winning position”. That is, whether
or not two honest players X and Y see the same set of proof of membership in TV r, they will both
see srW , and none of them can possibly see a proof P such that H(P) < H(srW). Accordingly, both
of them will recognize W as the leader of round r.

Note, however, that, if they so wanted(!), the malicious users might provide additional chances
for an honest user to become the leader of round r.19 In sum,

The leader `r of a round r is honest with probability ≥ h.

Above, probabilities are taken not only over the random choices of the oracle H, but also over
the possible coin tosses of all users (in this case of all malicious users, since the honest users are
always asked to act deterministically in all our protocols).

In sum,

With the above secretive selection mechanism, the system has inclusiveness h.

Once again, such inclusiveness can be increased by selecting 3 or more leaders for each round. (The
verifiers can use the leaders’ majority opinion in order to select their own initial values in the CBA
protocol.)

19For example, assume that the smallest value of the type H(srX) is H(srM), where M is malicious and does not
propagate his proof of membership in TV r in round r. Then, although M should have been the leader of round r,
his “ducking” may cause a honest user to become the round leader.

25

A Few Additional Details. One may worry what may happen when the winner W is malicious.
A malicious W may delay the propagation of his proof of membership, so that it is received only
by some of the honest users, probably causing different honest users to have different opinions
about who the leader of round r is.20 It is easy to realize, however, that, even in this situation,
Algorand’s blockchain will, with overwhelming probability, not fork. In fact, the CBA protocol
produces a unique certified output, and thus a unique official payset, whenever it is run with the
required majority of honest verifiers, whether or not the honest verifiers agree on who the round
leader is,21 and whether or not they agree on the verifier set TV r.22

By properly choosing the probability p, based on the percentage of honest users h, the
percentage of honest player h′ < h required by the CBA protocol, and the chosen acceptable
failure probability F , one can guarantee that the honest verifiers in TV r will have the required
majority with probability > 1− F .

Of course, in a version of Algorand with a secretive verifier-selection mechanism, the certificate
for the output of the CBA protocol at round r should, in addition to the digital signatures of a
sufficient number of verifiers, also include the proof of membership of these verifiers. (At the same
time, taking into account the possible fluctuation of the cardinality of TV r, the number of sufficient
signatures should be chosen so that the probability that the malicious verifiers could construct a
valid looking certificate (and thus a fork) is negligible.

Advantages of the Shielded-Verifiers Version of Algorand. Implementing Algorand with
a secretive selection mechanism adds some extra complexities, but also has a main advantage: it
dispenses with the Longer Corruption Time assumption. That is, this new version of Algorand
no longer requires to assume that the Adversary needs at least a few rounds to corrupt an honest
user. Thus, a secretive verifier-selection mechanism totally hides the honest round-r verifiers from
the Adversary until the very start of round r.

Thus, to cause a fork in this version of Algorand, the Adversary must be able not only
to coordinate perfectly all the users he corrupts, but also to corrupt any user pretty much
instantaneously (i.e., within a single round).

6.3 Removing the Continual Participation Requirement

An honest user in Algorand follows all his prescribed instructions, which certainly include
participating to the protocol.

In the basic and last version of Algorand, a user missing to participate in even a single round
is pessimistically judged malicious —although, in reality, he may have only experienced a network-
connection problem, or simply taken a “break”. (This harsh judgement was not capricious, but
necessary. In both versions, in fact, the verifier set of a given round r was summoned, whether

20Needless to say that is different from planning to have multiple verifiers, in order to increase inclusiveness, as
discussed above. Here, each honest verifier X believes there is a single verifier, `rX , but for another honest verifierY
we may have `rX 6= `rY .

21In fact, a round-r verifier X runs the CBA protocol with an initial value vX , and the agreement and consistency
properties of Byzantine agreement hold, no matter how each vX was selected.

22In fact, no matter what the malicious users might do, for each honest round-r verifier X, TV r
X is a subset of

TV r, and the difference set TV r \ TV r
X solely consist of malicious players. Thus, if the honest verifiers are in the

required majority in TV r, then an execution of CBA with “individual verifier sets” TV r
X is, in practice, “equivalent”

to an execution of CBA in which (1) the set of players is common knowledge and consists of TV r, and (2) for every
honest verifier X, the malicious players in TV r but not in TV r

X do not send any messages to X.

26

openly or secretly, in round r − 1. If the chosen verifiers could not respond to the call and take on
their duties because “absent”, then the inclusiveness of both versions would be 0.)

Continual participation can be strongly expected in a “permissioned” system, where users are
presumably carefully vetted before being admitted, but not in a permissionless system, despite all
incentives offered.

What can be done?
One possibility would be to revise the current Honest Majority of Users assumption so as

it applies only to the “currently active” users rather than the “currently existing” users. The
meaningfulness of such a revised assumption, however, would dubious at best. Indeed, since
“maliciousness never sleeps”, malicious users may find themselves in the majority, if honest users
were allowed to rest.

A better alternative is to modify the current version of Algorand so as to work with “lazy-but-
honest” users. Roughly, these are users who honestly follow all their prescribed instructions when
they participate to the protocol, but are asked to participate to the protocol only very rarely (e.g.,
once a month) and with advance notice. In such a case, it is much more reasonable to assume that
an honest user will indeed always participate when he is asked to.

This is actually quite easy to achieve.

The Lazy-but-Honest Version of Algorand. In the Shielded-Verifiers version of Algorand,
we modify the verifier-selection mechanism as follows.

A public key X ∈ PKr−K−k is selected as a verifier for round r if and only if .H (srX) ≤ p,
where srX = SIGX(r,X,Qr−K) and K is much larger than k.

Notice that in this version of Algorand, an honest user X can compute the digital signature srX
only in round r − K, because only in that round will he learn the quantity Q(r−K). As in the
previous versions of Algorand, however, the round-r verifiers are chosen among the users already
present k rounds before that in which srX is computed (so as to avoid that the malicious players,
after learning the relevant digital signatures, might be able to manipulate the candidate set from
which TV r is chosen by introducing new public keys).

Importantly, a user learns whether he has become a round-r verifier way before round r: indeed
K rounds before. Accordingly, accounting for the variability of the length of a round, a lazy-but-
honest user X may be asked to go “online” every —say— K/2 rounds, so as to (1) retrieve the
latest K/2 “Q quantities” produced since the last time he was online, and (2) generate his proper
K/2 digital signatures of each one of them, in order to learn if he is going to be selected as a verifier
in any of the next K/2 rounds.

If not, he can go off-line with an “honest conscience”. Had he continuously participated, he
would have essentially taken 0 steps in the next K/2 rounds, which is exactly what he is doing.

If yes, he will prepare himself by readying all the information —e.g., the status information—
he needs to act honestly as a verifier at the proper round, and to earn the rewards he is entitled
to. In a sense, the lazy-but-honest version of Algorand enables lazy users to remain honest. (In
Appendix E we discuss efficient ways to learn the current status information securely.)

By so acting, such a user X only misses participating to the the propagation protocol. But
a propagation protocol is typically robust and relies on who announces to be active anyway. (At
most, to handle propagation with fewer active honest users, one has to use a larger number of
“neighbors” and/or revise upwards the delivery time upperbound π.)

27

Notice that, if unpredictability were not a desideratum, then one could handle “lazy-but-honest”
users by means of simpler and open selection mechanisms.23

6.4 Removing the One-Key-Per-User Assumption

So far, we have assumed that the public keys in each PKr are in a one-to-one correspondence with
the users in the system, an assumption that is hard to enforce, at least in a permissionless system.

Allowing users to generate multiple keys would enable them to enjoy the (pseudo) anonymity
they enjoy in Bitcoin, but would also greatly endanger the security of the system. Indeed, by letting
each malicious user own a great number of keys, the Adversary could ensure (a) that the leader of
most rounds is malicious, thereby causing the inclusiveness of the system to be negligible, and (b)
that most verifier sets have a malicious majority, thereby forcing the Algorand’s blockchain to fork.

To avoid these security problems we put forward the preferred version of Algorand. This version
essentially coincides with the lazy-but-honest one, after modifying the mechanisms for selecting the
leader and the verifiers of a round, and relies on the Honest Majority of Money assumption.

The Preferred Verifier-Selection Mechanism At a high level, we take a proof-of-stake
approach in selecting the verifier set TV r. That is, we no longer assign to each key X ∈ PKr−K−k

the same probability of being selected. Instead, we let the probability of choosing such X be
proportional to ar−K−kX , that is, to the amount of money that X holds in round r−K − k. Let us
explain how.

Assume that, in the lazy-but-honest version of Algorand, the (expected) number of verifiers we
like to select is, for concreteness, 1,000; and that the total amount of money owned, in round r− 1,
by the keys in PKr−K−k is, for concreteness again, 109. Then, we let a unit of weight correspond
to an amount of money of 106.

Let X ∈ PKr−K−k and let the amount X owns in round r − 1 be, for final concreteness, 3.7
millions. Then, to determine whether X becomes a verifier in round r, and the weight with which
he becomes a verifier, we independently roll 4 biased coins: the first 3 have probability 1/106 of
coming up Heads; the forth has probability .7/106. Key X becomes a round-r verifier if at least one
coin toss ends up Heads, and with weight w, w ∈ {1, 2, 3, 4}, if w of the 4 coin tosses are Heads. To
implement these 4 coin tosses, X first computes srX = SIGX

(
X, r,H

(
Qr−1)); second it computes

the four values

v1,X = H(1, srX) v2,X = H(2, srX) v3,X = H(3, srX) v4,X = H(4, srX);

third it computes the ith coin toss ci,X , for i = 1, ..., 3, to be 1 if and only if .H(i, srX) < 1/106;
and lastly it computes the fourth coin toss c4,X to be 1 if and only if .H(i, srX) < .7/106.

Accordingly, X is a round-r verifier if and only if
∑

i ci ≥ 1.

If this is the case, then X propagates srX .

Note that such srX is a proof that X ∈ TV r, and that X’s weight is wX =
∑

i ci. (If so wanted,
we could augment this proof to include the actual values vi,X for which ci = 1.)

23E.g., by the following one: A public key X ∈ PKr−K−k is selected as a verifier for round r if and only if
.H(r,X,Qr−K) ≤ p. Algorand could also work with such “ Open Self Selection” mechanisms.

28

The Preferred Leader Selection Mechanism A key X ∈ PKr−K−k is selected as the leader
of round r with a probability that is again proportional to the money that X owns in round r− 1.
Namely,

Every user U personally recognizes a user Z ∈ PKr−K−k to be the leader of round r if and only if

(a) U has received a proof srZ that Z ∈ TV r and

(b) there exists an integer i such that vi,Z < vj,X

for all integers j and all users X for which U has received a proof srX that X ∈ TV r.

Note that with probability at least 1/2, under the Honest Majority of Money assumption, every
honest user personally recognizes the same user Z to be the leader of round r.

Once again, this implies inclusiveness 1/2, and as before, it does not matter that, in some
rounds, different honest users may recognize different leaders.

A Few Additional Details After choosing the leader and the verifiers (and their weights) of
each round in this fashion, the protocol continues “as before”, with the same terminology even,
after interpreting a verifier X with weight wX as wX “incarnations” of X, X.1, . . . , X.wX , and
treat each incarnation as a separate user. For instance, “a set of at least k round-r verifiers” means
“a subset K of TV r such that the the sum of the weights of its members is at least k”.

Switching Honesty Assumption

Note that, to remove the One-Key-Per-User assumption, we no longer rely on the Honest Majority
of User assumption, but on Honest Majority of Money.

Gained Advantage A main advantage of assigning power to a key in proportion to the amount
of money it owns is that a malicious user M no longer has any incentives to increase the number
of keys he has in the system in order to gain more control. His influence over the system remains
the same if —say— he has one million of monetary units in a single key, or a single monetary unit
in one million keys. Should a malicious user have more power in the latter scenario, the set of keys
would become so unwieldy as to cause the collapse of the system.

By contrast, in the present modification, a user may wish to spread his money over more keys
only for privacy reasons, that is, to enjoy additional (pseudo) anonymity.

6.5 More General and Efficient Block Structures

We have developed a more general and flexible way to organize blocks of information. Our new
block structures can replace blockchains in Algorand, and in any blockchain-based system, so as to
enable one to prove very efficiently the content of an individual past block.

Recall that, to form a block chain, a block Br has the following high-level structure:

Br = (r, INFOr, H(Br−1)) ,

29

where INFOr is the information that one wishes to secure within the rth block: in the case of
Algorand, INFOr = PAY r.24

A well known fundamental property of block chains, recalled below in order to establish a
common terminology and an abridged line of reasoning, is that no one can alter a past block without
also changing the last block. Indeed, let the latest block be Blast and assume that one replaces
Br with a different block B̃r. Then, since H is collision resilient, H(B̃r) is —with overwhelming
probability— different from H(Br). Accordingly, no matter how one chooses the information

˜INFOr+1, for the block following B̃r in the blockchain, namely B̃r+1 = (r+ 1, ˜INFOr+1, H(B̃r)),
due again to the collision resiliency of H, it is the case that

B̃r+1 6= Br+1 .

This inequality propagates. That is, B̃r+2 differs from Br+2; and so on, so that ultimately

B̃last 6= Blast .

This property enables one to verify the content of an individual past block, but only inefficiently.

Inefficient Verifiability of Individual Blocks in Blockchains Consider a person X who
does not know the entire blockchain, but knows that Bz is a correct block in it. Then, the above
fundamental property enables one to prove to such a person that any individual block Br, where r
is smaller than z, is also correct. Namely, one provides, as a “proof”, all the intermediate blocks
Br+1, . . . , Bz−1 to X, who then uses H to regenerate the blockchain from r onwards, until he
reconstructs the zth block and checks whether or not it coincides with the block Bz he knows. If
this is the case, then X is convinced of the correctness of Br. Indeed, anyone capable of finding
such a seemingly legitimate proof must also have found a collision in the hash function H, which
is practically impossible to find.

To see the usefulness of such verifiability, consider the following example. Let the blockchain
be generated by a payment system such as Bitcoin or Algorand , and let X be a judge in a court
case in which the defendant wishes to prove to X that he had indeed made a disputed payment
P to the plaintiff two years before. Since it it reasonable to assume that the judge can obtain the
correct last block in the chain, or at least a sufficiently recent correct block, Bz, “all” the defendant
has to do is to provide the proof Br+1, . . . , Bz−1 to the judge, who then verifies it as explained.

The problem, of course, is that such a proof is quite long. If each block comprises the payments
of a one-minute interval, as in Algorand , then the proof consists of one million blocks. This is not
a trivial amount of information. If there are roughly 1,000 payments per block, and each payment
consists of 300 bytes (as is the case for Bitcoin), then the proof comprises 300 giga bytes.

24Recall that we use superscripts to indicate rounds in Algorand. This section, however, is dedicated to blockchains
in general, and thus the rth block may not correspond to the rth round in the sense of Algorand. That is, above “r”
is just the block number, and it is included in block Br for clarity.

Also note that the above general structure of a block is conceptual. For instance, in Bitcoin Br may include
the digital signature of the block constructor, the one who has solved the corresponding computational riddle. In
Algorand , the authentication of Br —that is, a matching certificate CERTX— may be provided separately. However,
it could also be provided as an integral part of Br. In this case, since there may be many valid certificates, the leader
`r of round r may include, in its message to all round-r verifiers, also a valid certificate for the output of the previous
round, so that agreement will also be reached on what the certificate of each round r is.

30

Blocktrees Since the ability to prove efficiently the exact content of a past individual block is
quite fundamental, we develop new block structures.

In our new structures, like in blockchains, the integrity of an entire block sequence is compactly
guaranteed by a much shorter value v. This value is not the last block in the sequence. Yet, the
fundamental property of blockchains is maintained: any change in one of the blocks will cause a
change in v.

The advantage of the new structures is that, given v, letting n be the number of blocks currently
in the sequence, the content of each individual block can be proved much more efficiently. For
instance, in blocktrees, a specific embodiment of our new block structures, each block can be proved
by providing just 32 · dlog ne bytes of information.

This is indeed a very compact proof. In a system generating one block per minute, then, after
2 millennia of operations, dlog ne < 30. Thus, less than 1KB —one kilo byte, that is, 1,000 bytes—
suffice to prove the content of each individual block. (Less than 2KB suffice after two billions of
years, and 4KB suffice essentially for ever.) Moreover, such a proof is verified very efficiently.

Details about blocktrees can be found in Appendix D.

6.6 Using More Sophisticated Cryptographic Tools

Algorand can also benefit from more sophisticated cryptographic tools. In particular,

1. Combinable Signatures. Often, in Algorand , some piece of data D must be digitally signed by
multiple parties. To generate a more compact authenticated record, one can use combinable
digital signatures. In such signatures, multiple public keys —e.g., PK1, PK2 and PK3 could be
combined into a single public key PK = PK1,2,3— and signatures of the same data D relative
to different public keys can be combined into a single signature relative to the corresponding
combined public key. For instance, SIG1(D), SIG2(D) and SIG3(D) could be transformed into
a single digital signature s = SIG1,2,3(D), which can be verified by anyone relative to public
key PK1,2,3. A compact record of the identifiers of the relevant public key, in our example the
set {1, 2, 3}, can accompany s, so that anyone can quickly gather PK1, PK2 and PK3, compute
PK = PK1,2,3, and verify the signature s of D based on PK.

This allows to turn multiple related propagations into a single propagation. In essence, assume
that, during a propagation protocol, a user has received SIG1,2,3(D) together with a record
{1, 2, 3} as well as SIG4,5(D) together with a record {4, 5}. Then he might as well propagate
SIG1,2,3,4,5(D) and the record {1, 2, 3, 4, 5}.

2. Tree-Hash-and-Sign. When a signature authenticates multiple pieces of data, it may be useful
to be able to extract just a signature of a single piece of data, rather than having to keep or
send the entire list of signed items. For instance, a player may wish to keep an authenticated
record of a given payment P ∈ PAY r rather than the entire authenticated PAY r. To this end,
we can first generate a Merkle tree storing each payment P ∈ PAY r in a separate leaf, and
then digitally sign the root. This signature, together with item P and its authenticating path,
is an alternative signature of essentially P alone.

3. Certified Email. One advantage of the latter way of proceeding is that a player can send his
payment to ` by certified email,25 preferably in a sender-anonymous way, so as to obtain a

25E.g., by the light-weight certified email of US Patent 5,666,420.

31

receipt that may help punish ` if it purposely decides not to include some of those payments in
PAY r

` .

7 Permissioned Algorand

This version of Algorand balances privacy and traceability. It also provides a new, and not
controlling, role for banks or other external entities. The version relies on the classical notion
recalled below.

7.1 Digital Certificates

Assume that the public key PK of a party R, who has the authority to register users in the system,
is publicly known. Then, after identifying a user X and verifying that a public key PKX really
belongs to X, R may issue a digital certificate, CX , guaranteeing that not only PKX is a legitimate
public key in the system, but also that some suitable additional information I holds about X: in
essence,

CX = SIGR(PKX , I).

For instance, I may specify X’s role in the system, the date of issuance of the certificate, a date of
expiration of the certificate (i.e., the date after which one should no longer rely on CX), etc. For
instance, CX = SIGR(PKX , X, user, issued : 03/21/2016, expiring : 03/21/2017).26

Accordingly, by presenting his own digital signatures of a message m, SIGX(m), relative to
a key PKX , together with such CX , X enables another party X who knows PKR, and can thus
verify CX , to verify that SIGX(m) is indeed X’s digital signature of a message m.

Digital certificates can also be chained. In a length-two chain, R may issue a first certificate to
another entity R′, specifying that R′ has the authority to issue certificates, and then R′ may issue
a separate certificate for PKX , so that CX may be taken to consist of both these certificates.

Using Certificates to Prevent Illegal Activities

The payer and the payee of a payment made via a traditional check are readily identifiable by every
one holding the check. Accordingly, checks are rarely used for money laundering or other illegal
activities. Digital certificates, issued by a proper registration agent, could be used in Algorand to
ensure that only some given entities can identify the owner X of a given public key PKX , and only
under proper circumstances. Let us give just a quick example.

There may be multiple registration authorities in the system. For concreteness only, let them
be banks, whose public keys are universally known (or have been certified, possibly via a certificate
chain) by another higher authority whose public key is universally known, and let G be a special
entity, referred to as the government. To join the system a user X needs a bank-certified public
key. To obtain it, he generates his own public-secret signature pair (PKX , SKX), and asks a bank
B in the system to issue a certificate CX = SIGB(B,PKX , I). To be valid, a payment should
always include a certificate for each of its payer and payee. In order to issue CX , B is additionally

26If an expiration date is included, then, as long as x continues in good standing, R can automatically re-issue his
certificate for the next time period. So, a certificate can very well have —say— only a single day of validity.

32

required to identify X, so as to produce some identifying information IX .27 Then, B computes
H(IX), and makes it a (preferably) separate field of the certificate. That is,

CX = SIBB(B,PKX , I,H(Ix)).

Since H is a random oracle, only the bank knows that PKX ’s owner is X. However, if G wishes to
investigate the payer or the payee of a given payment, it retrieves the relevant certificate CX and
the bank B that has issued CX , and then asks or compels B, with proper authorization (e.g., a
court order), to produce the correct identifying information IX of X.

Note that the bank cannot reveal an identifying piece of information I ′X that is different from
that originally inserted in the certificate, since H is collision-resilient.

It is also possible to insert in the certificate, instead of H(IX), an encryption of IX with a key
known to the bank, or an encryption of IX , E(IX), with a key known to G and only to G, as when
G uses a public-key (preferably probabilistic) encryption scheme: in symbols,

CX = SIBB(B,PKX , I, E(Ix)).

This way, the identities of the payers and the payees of all payments are transparent to G, without
having to request the cooperation of any bank.

Let us stress that neither B nor G, once the certificate CX has been issued, has any control over
X’s digital signatures, because only X knows the secret key corresponding to PKX . In addition,
neither one of them can understand the sensitive information I of a payment P that X makes,
because H(I), and not E(I), is part of P . Finally, neither B nor G is involved in processing the
payment P , only the randomly selected verifiers are. Finally, if a bank-issued certificate CX has
no expiration date, then no one, either the bank B that has issued it, nor the government G, can
“prevent user X to have access to his own money”. The government can only retrieve, directly
or via a court order, the identity of the payer and the payee of a payment. Thus, the discussed
law-enforcement concern is put to rest. Yet, except for B and G, X’s owner continues to enjoy the
same (pseudo) anonimity he enjoys in Bitcoin, and similar systems, relative to any one else: banks,
merchants, users, etc.

This is a new role for a bank B, and a role that it can easily perform for its customers, because
B already knows them very well, and because it typically interacts with them from time to time.
By certifying a key X of one of its customers, B performs a simple but valuable service, for which
it may be rewarded in several ways.

An additional advantage of using banks as registration authorities in a permissioned version of
Algorand is that, by a proper authorization of their clients, money can be transferred from their
traditional bank accounts to their keys in Algorand, at the same exchange rate, so that de facto
Algorand may be used as a very distributed, convenient, and self-regulated payment system, based
on a national currency, if so wanted. In this case, users may entrust their respective banks to take
over their verification duties, or at least host their secret keys in their secure servers, and use the
banks’ faster data networks for communication. Incentives can be split between banks and users in
any proportion. Actually, banks may have sufficient benefits from handling the users’ money and
may not need any incentives.

27In particular, such IX may include X’s name and address, a picture of X, the digital signature of X’s consent
—if it was digital—, or X can be photographed together with his signed consent, and the photo digitized for inclusion
in IX . For its own protection and that of X as well, the bank may also obtain and keep a signature of X testifying
that IX is indeed correct.

33

Rewards from Retailers Only Whether or not the registration authorities are banks, and
whether or not law-enforcement concerns are addressed, a permissioned deployment of Algorand
enables one to identify (e.g., within its certificate CX) that a given key X belongs to a merchant.

A merchant M , who currently accepts credit card payments, has already accepted his having to
pay transaction fees to the credit card companies. Such an M may thus prefer paying a 1% fee in
Algorand to paying the typically higher transaction fee in the credit card system (not to mention
the fact that he will greatly prefer to be paid within seconds, rather than days; to be paid in a less
disputable way; etc.)

Accordingly, it is possible to arrange that all rewards in Algorand are a small percentage of
the payments made to merchants only. Although such payments are strictly contained in the set
of all payments, it is possible to leverage rewards from merchants only in order to incentivize the
processing of all payments.28

28For instance, letting A′ be the total amount paid to retails in the payments of PAY r, one could compute a
maximum potential reward R′ (e.g., R′ = 1%A′). The leader and the verifiers, however, will not collectively receive
the entire amount R′, but only a fraction of R′ that grows with the total number (or the total amount, or a combination
thereof) of all payments in PAY r. For example, keeping things very simple, if the total number of payments in PAY r

is m, then the actual reward that will be distributed will be R′(1− 1/m). As before, this can be done automatically
by deducting a fraction 1%(1− 1/m) from the amount paid to each retailer, and partitioning this deducted amount
among the leader and verifiers according to a chosen formula.

34

APPENDIX

A The Proof-of-Work Approach of Bitcoin

The purpose of this section is not to describe accurately, or even with reasonable approximation,
how Bitcoin works. Indeed, we shall leave out significant details (such as the organization of money
in “individual coins”, the incentive structure, etc.) in order to provide a flavor of the proof-of-work
approach of Bitcoin, and thus to explain the three problems discussed in Section 2 arise.

In Bitcoin and its variants [12, 13, 24], a payment P is propagated in a peer-to-peer fashion. As
new payments are continually made, at every point in time different users may indeed see different
payments, and thus hold different views of the status of the system. Bitcoin addresses such possible
confusion as follows.

Main Idea Bitcoin organizes the payments into a sequence of blocks, B = B1, B2, . . ., so as to
determine a payment history (i.e., the payments in B1, followed by those in B2, and so on) consisting
of valid payments. Bitcoin delegates the generation of a new block to all users, but ensures that,
in this collective generation effort, only one user is expected to succeed in —say— a ten-minute
period, so as to prevent the confusion that would arise by having multiple alternative blocks being
generated almost simultaneously. To this end, in order to be valid, a block must also contain
the solution to a separate (indeed, block-specific) cryptographic riddle, whose level of difficulty is
chosen so that only one solution is expected to be found by anyone in the world in a ten-minute
interval. Solving such a riddle requires a lot of computation.

Informal Details About Block Generation Each block Bi, in addition to payments and other
information, also contains a value vi that can be chosen arbitrarily. To be valid, a block Bi (in
addition to containing valid payments, relative to the payment history so far) must be such that
the string H(Bi) ends in k 0s. Since H is a random oracle producing binary strings longer than
k, the probability that H(Bi) ends in k 0s is 2−k. After preparing a (candidate) block Bi, a user
hashes it to verify whether indeed H(Bi) ends in k 0s. If this is not the case, the user may keep the
same set of payments in the candidate block (or may add a few more that he has recently seen),
change the value vi, and hash the so changed Bi again, until he eventually succeeds, in which case
he propagates the valid block Bi. For instance, if k = 40, then roughly a quadrillion attempts are
expected before succeeding at forming a new valid block.

If the number of the users actively trying to form a new block is fixed, then it is possible to fix
k so that the expected time to generate a new block is 10 minutes. When the number of such users
varies over time, then it is necessary to adjust k accordingly.29

Multiple blockchains and the True Time to Payment in Bitcoin In Bitcoin, from the
point of view of an individual user, the public ledger consists of the longest legitimate blockchain
the user sees. Such a chain, however, may not be the same for all users, and a user may see the
last few blocks of his longest blockchain totally change. Let us explain.

29For instance, if, while k stays the same, the number of users trying to generate a new block dramatically
increases, then one notes that a new block may arise in 2 rather than 10 minutes. But as this fact is noticed, Bitcoin
automatically re-adjusts k. This fact, based on our description so far, of course makes it more complex to verify
whether a sequence of blocks is a legitimate block chain. But we do not need to delve in these complications.

35

Let X and Y be two different users who, seeing the same longest blockchain B = B1, . . . , Bi−1,
almost simultaneously succeed to generate and append to it a new block. Since, however, the recent
payments they see need not be the same, the new blocks they generate, respectively BX

i and BY
i ,

may be different. So, for the moment, at least X and Y hold different opinions about the last block
of “their own” public ledger.

At this point, each of X and Y propagates his own new block, while other users make and
propagate their own new payments. During all this propagation, many (or even most) other users
may thus see both the chain BX = B1, . . . , Bi−1, B

X
i and the chain BY = B1, . . . , Bi−1, B

Y
i . Let Z

be such a user. Accordingly, when trying to create a new block, Z must choose which of the two
chains to elongate. That is, when constructing a new candidate block, Z must choose whether to
include in it H

(
BX

i

)
or H

(
BY

i

)
. Assume that Z generates and starts disseminating a new block,

BZ
i+1, elongating the chain BY , while the blocks BX

i and BY
i are still being propagated. (Indeed,

although a new block is expected to be produced in 10 minutes, it is possible to produce it in a
much shorter time.) Then, for a while, it may happen that, in the eyes of at least some users, four
public ledgers exist: namely, the (i − 1)-block blockchain B, the i-block blockchains BX and BY ,
and the (i+ 1)-block blockchain BZ .

Because users are asked to elongate the longest blockchain they see, we expect that, from some
point in time onwards, only one of BX and BY will be a sub-chain of every user’s public ledger.
That is, we expect that the ith block of the public ledger will eventually stabilize. Although it is
hard to predict when such stabilization may occur, in practice one may assume that the ith block
of a blockchain that is at least (i+ 6)-block long will no longer change.

Accordingly, if a transaction, belonging to the seventh last block, transfers an amount a from
public key PK to public key PK ′, then the owner of PK ′ ‘can consider himself paid’. That is, in
Bitcoin the true “time to payment” is not ten minutes, but one hour.

B Alternative Verifier-Selection Mechanisms

So far, Algorand selects the leader `r and the verifier set TV r of a round r automatically, from
quantities depending on previous rounds, making sure that TV r has a prescribed honest majority.
We wish to point out, however, alternative ways to select the verifiers and the leader.

One such way, of course, is via a cryptographic protocol (e.g., a multi-party function evaluation
protocol in the sense of Goldreich, Micali, and Wigderson [?]) run by all users. This approach,
however, is hopelessly slow when the number of users in the system is high. Let us thus consider
two classes of alternative mechanisms: chained , nature-based , and trusted-party mechanisms.

One may also consider mixing the latter mechanisms with those already discussed.

Chained Mechanisms

Since each TV r (which may include `r) has an honest majority, we could have TV r itself (or more
generally some of the verifiers of the rounds up to r) select the verifier set and/or the leader of
round r. For instance, they could do so via multi-party secure computation. Assuming that the
initial verifier set is chosen so as to have an honest majority, we rely on boot-strapping: that is, the
honest majority of each verifier set implies the honest majority of the next one. Since a verifier set
is small with respect to the set of all users, his members can implement this selection very quickly.

Again, it suffices for each round to select a sufficiently long random string, from which the
verifier set and the leader are deterministically derived.

36

Nature-Based Mechanisms

The verifier set TV r and the leader `r of a given round r can be selected, from a prescribed set of
users PKr−k, in a pre-determined manner from a random value vr associated to the round r. In
particular, vr may be a natural and public random value. By this we mean that it is the widely
available result of a random process that is hardly controllable by any given individual. For instance,
vr may consist of the temperatures of various cities at a given time (e.g., at the start of round r, or
at a given time of the previous round), or the numbers of stock of given security traded at a given
time at a given stock exchange, and so on.

Since natural and public random value may not be sufficiently long, rather than setting

TV r vr← PKr−k ,

we may instead set

TV r H(vr)← PKr−k .

Trustee-Based Mechanisms

An alternative approach to selecting TV r involves one or more distinguished entities, the trustees,
selected so as to guarantee that at least one of them is honest. The trustees may not get involved
with building the payset PAY r, but may choose the verifier set TV r and/or the leader `r.

The simplest trustee-based mechanisms, of course, are the single-trustee ones. When there is
only one trustee, T , he is necessarily honest. Accordingly, he can trivially select, digitally sign, and
make available TV r (or a sufficiently random string sr from which TV r is derived) at round r.

This a simple mechanism, however, puts so much trust on T . To trust him to a lesser extent,
T may make available a single string, sr, uniquely determined by the round r, that only he
can produce: for instance, sr = SIGT (r). Then, every user can compute the random string
H(SIGT (vr)), from which TV r is derived.

This way, T does not have the power to control the set TV r. Essentially, he has a single strategic
decision at his disposal: making SIGT (r) available or not. Accordingly, it is easier to check whether
T is acting honestly, and thus to ensure that he does so, with proper incentives or punishments.

The problem of this approach is unpredictability. Indeed, T may compute SIGT (r) way in
advance, and secretly reveal it to someone, who thus knows the verifier set of a future round, and
has sufficient time to attack or corrupt its members.

To avoid this problem, we may rely on secure hardware. Essentially, we may have T be a tamper-
proof device, having a public key posted “outside” and a matching secret key locked “inside”,
together with the program that outputs the proper digital signatures at the proper rounds. This
approach, of course, requires trusting that the program deployed inside the secure hardware has no
secret instructions to divulge future signatures in advance.

A different approach is using a natural public random value vr associated to each round r. For
instance, T may be asked to make available SIGT (vr). This way, since the value vr of future rounds
r is not known to anyone, T has no digital signature to divulge in advance.

The only thing that T may still divulge, however, is its own secret signing key. To counter
this potential problem we can rely on k trustees. If they could be chosen so as to ensure that a
suitable majority of them are honest, then they can certainly use multi-party secure computation
to choose TV r at each round r. More simply, and with less trust, at each round r, we may have
each trustee i make available a single string, uniquely associated to r and that only i can produce,

37

and then compute TV r for all such strings. For instance, each trustee i could make available the
string SIGi(r), so that one can compute the random string sr = H(SIG1(r), . . . , SIGk(r)), from
which the verifier set TV r is derived. In this approach we might rely on incentives and punishments
to ensure that each digital signature SIGi(r) is produced, and rely on the honesty of even a single
trustee i to ensure that the sequence s1, s2, . . . remains unpredictable.

The tricky part, of course, is making a required string “available”. If we relied on propagation
protocols then a malicious trustee may start propagating it deliberately late in order to generate
confusion. So, trustee-based mechanisms must rely on the existence of a “guaranteed broadcast
channel”, that is, a way to send messages so that, if one user receives a message m, then he is
guaranteed that everyone else receives the same m.

Finally, rather than using secure computation at each round, one can use a secure computation
pre-processing step. This step is taken at the start of the system, by a set of trustees, selected so
as to have an honest majority. This step, possibly by multiple stages of computation, produces a
public value pv and a secret value vi for each trustee i. While this initial computation may take
some time, the computation required at each round r could be trivial. For instance, for each round
r, each trustee i, using his secret value vi, produces and propagates a (preferably digitally signed)
single reconstruction string sri , such that, given any set of strings Sr that contains a majority of
the correct reconstruction strings, anyone can unambiguously construct TV r (or a random value
from which TV r is derived). The danger of this approach, of course, is that a fixed set of trustees
can be more easily attacked or corrupted.

C Certified Byzantine Agreement

C.1 The Notion of Certified Byzantine Agreement

Recall that, in a protocol P, a player is honest if, in every execution of P, he follows all his prescribed
instructions, and malicious otherwise. An execution of P terminates when each honest player
terminates. In an execution of P, malicious players are allowed to deviate from their instructions
in every way they want, and even to perfectly coordinate their actions.

Let us start by recalling the simpler, traditional notion of a Byzantine agreement. This notion
was introduced by Pease Shostak and Lamport [14] for the binary case, that is, when every initial
value consists of a bit. However, it was quickly extended to allow for arbitrary initial values. (See
the surveys of Fischer [15] and Chor and Dwork [16].)

Definition (Traditional Byzantine Agreement) Let P be a protocol in which every player X
has an initial value vX and, if he terminates, outputs a value OUTX . Then, P is a Byzantine
agreement protocol tolerating t malicious players if, in every execution in which at most t players
are malicious, it terminates with the following guarantees:

1. Agreement: OUTX = OUTY for all honest players X and Y .

2. Consistency: if the inputs of all honest players coincide with some value v, then OUTX = v
for every honest player X.

A Byzantine agreement protocol has fault tolerance f , f ∈ [0, 1], if it tolerates a fraction f of
the actual number of players. 4

38

Recall that Algorand needs a subroutine guaranteeing not only that the n verifiers of a given
round r reach consensus among themselves about PAY r, but also that they can prove to all users
what PAY r is. Accordingly, it is not enough that they execute a Byzantine agreement protocol
using as initial inputs the digitally signed value PAY r

`r provided to each one of them by the leader
`r. They need to run a stronger type of consensus protocol. Namely, one in which each (honest) user
X outputs in addition to OUTX also a certificate, CERTX , enabling to convince all users, including
those who have not participated to the consensus protocol, that OUTX really is the output of a
given execution. Such a certificate CERTX is close in spirit to a digital signature. That is, it is
a string that can be quickly inspected for correctness (via a suitable verification algorithm V RF),
but hard to forge. Slightly more precisely, recalling that n is the number of verifiers,

Definition (Certified Byzantine Agreement) Let V RF : Z+ × {0, 1}∗ × {0, 1}∗ → {0, 1} be
an efficiently computable function. Let P be a protocol in which, in an execution r, each
player X has an initial value vrX and, upon termination, produces a value OUT r

X and a string
CERT r

X . Then, P is a certified Byzantine Agreement (CBA) protocol with fault tolerance f
and verification algorithm V RF if, for every execution r in which a fraction greater than f
of the players are honest, with overwhelming probability P terminates satisfying the following
properties:

1. Agreement: OUT r
X = OUT r

Y for all honest verifiers X and Y .

2. Consistency: if, for some value v, vrX = v for all honest players X, then OUT r
X = v for all

honest players X.

3. Certification. For every honest player X

• V RF (r,OUT r
X , CERT

r
X) = 1, and

• If OUT r
X 6= v, then it is computationally intractable to produce any string FAKE such

that V RF (r, v, FAKE) = 1.

C.2 The Protocol Classical CBA

Classical CBA is a trivial adaptation of the protocol of Dolev and Strong [17], and is thus omitted.
This protocol has fault tolerance 1/2 and requires t+1 stages of n-to-n communication, if there

are t malicious players.

C.3 The Protocol CBA?

Protocol CBA? has fault tolerance 2/3.
We construct CBA? based on

(a) the reduction of Turpin and Coan [18], showing that an arbitrary-value Byzantine agreement
protocol can be constructed by adding just two stages of n-to-n communication to any binary
Byzantine agreement protocol, and

(b) the randomized binary Byzantine agreement protocols of Feldman and Micali [22] (in turn based
on that of Rabin [20] and Ben-Or [19]).

39

Essentially without modifications, the reduction of Turpin and Coan also shows that an
arbitrary-value CBA protocol can be constructed by adding just two stages of n-to-n communication
to any binary CBA protocol.

Let us thus provide the intuition for constructing a binary CBA protocol, Binary CBA?.

Intuition for Binary CBA?

Consider the following idealized protocol P. This protocol consists of three phases, in which each
player X starts with a bit bX , which he then updates. The bit bX represents X’s current opinion
about what the binary output of the protocol should be. Initially, bX is the original binary input
of X.

1. Every X sends bX to all players, including himself.

2. A new randomly and independently selected bit c magically appears in the sky, visible to all.

3. Every player X updates bX as follows.

3.1 If X has just received 0 from more than 2/3 of the players, then he (re)sets bX to 0.

3.2 If X has just received 1 from more than 2/3 of the players, then he (re)sets bX to 1.

3.3 Else X (re)sets bX to c.

We refer to each such bit c as a common coin.

Quick Analysis.

There are four possible cases to consider: namely, in the same phase 3 of an execution of P,

(i) All honest players update their bit according to 3.1 or 3.2.

In this case, either all honest players update their bits according to 3.1, or all of them do so
according to 3.2. Thus, agreement holds at the end of this phase: that is,

bX = bY for all honest X and Y .

(ii) All honest players update their bits according to 3.3.

In this case agreement is reached right away: indeed, bX = c for all honest X.

(iii) Some honest players update their bits according to 3.1, and all others according to 3.3.

Let H0 (respectively, H(1)) be the set of honest players updating their bits according to 3.1
(respectively, 3.2). If c = 0, then all players in H(0) reset their bits to 0, while all those in H(1)
reset theirs to c, which is 0. Since c = 0 with probability 1/2, then in case (iii) agreement on
0 is reached with probability 1/2.

(iv) Some honest players update their opinion according to 3.2, and all others according to 3.3.

In this case, a symmetric argument shows that agreement is reached on 1 with probability 1/2.

40

In sum, at the end of each execution of the idealized protocol P, no matter what malicious players
might do, agreement is reached with probability at least 1/2. Moreover, in virtue of the update
rules 3.1 and 3.2, once agreement is reached on some bit b, agreement continues to hold on the
same bit b, even if protocol P is executed again and again. Finally, if all honest verifiers started
with the same initial bit (i.e, if the honest players were originally in agreement on b), then they
will continue to agree on b.

A problem with the above idealized protocol P is that, when agreement is reached, the honest
verifiers are not aware that this is the case.

From Unaware Agreement to Aware Agreement. One way to avoid the above problem is
to iteratively execute P —say— 100 times. Thus, the probability that agreement is not reached at
the end of the 100th iteration is 2−100, and can be safely ignored. This approach, however, wastes
many iterations of P, because the overwhelming majority of the times, agreement would have been
reached way before the 100th iteration.

The following, still idealized, approach instead allows for fast and detectable termination.
Rather than iterating independent executions of P, iterate three correlated executions of P.

The first one assumes that c = 0, that is, “forces the random bit c in the sky to be 0”.
The second assumes that c = 1.
The third lets c be a randomly and independently selected bit.

As already mentioned, the third execution enables reaching agreement with probability 1/2. The
first two instead ensure that, if agreement has already been reached on some bit b, an honest player
X can learn that this is the case, and terminate the iteration with the binary output b. Let us see
why this is the case.

Assume that agreement has just been reached on 0, let X be an honest player, and consider
phase 1 of the next execution of P in which c is forced to be 0. Then, in that phase, X receives
0 from all honest players. Accordingly, no matter what bits the malicious players may send, X
receives 0 from more than 2/3 of the players. Therefore, he can send 0 in three more phases and
safely terminate outputting 0. Better yet, he terminates right away, because the predetermined
rule is that, when one does not hear from X in a phase, he pretends that X says the same thing
he said last. Indeed, when X so terminates, he knows that either there is already agreement on 0,
or agreement will be reached on 0 at the end of the next phase 1.

By symmetry, if agreement has been just reached on 1, then in phase 2 of P, where c is forced
to be 1, an honest X can safely terminate outputting 1.

From common coins to Frequently Common Coins

As we have seen, each common coin c in phase 2 of P brings the verifiers into agreement with
probability 1/2.

Notice, however, that it is not necessary to have a common coin c in each phase 2. Trivially, if
the bit c were common in each phase 2, but random and independent only with probability 2/3,
then such a magic bit would bring the verifiers into agreement with probability 2/3 at each phase
2. Slightly less trivially, the players would get into agreement with probability 2/3, at each phase
2, if, at each phase 2, each verifier X sees a bit cX such that,

• with probability 2/3,

(i) cX is randomly and independently selected in {0, 1}, and

(ii) cX = cY , for all verifiers X and Y

41

(i.e., the “coin” happens to be common); and

• with complementary probability, the bits cX are not only independent, but adversarially chosen
(i.e., the “coin” is partial).

We call such a vector of bits {cX : X ∈ TV r} a partially common coin.
The reason why such a coin brings the verifiers into agreement with probability 2/3 at each

phase 2 is that, once the coin happens to be common, then it brings the verifiers into agreement,
and, after they are in agreement, no matter what the bit vector {cX : X ∈ TV r} might be, the
honest verifiers, due to rules 3.1 and 3.2, remain in agreement.

Let us now show how to implement a partially common coin.

Binary CBA? via Partially Commom Coin.

In order to turn the idealized binary CBA protocol P ′ into the binary CBA protocol CBA?, we

• implement, for each iteration i of P ′, a partially common coin {c(i)X : X ∈ TV r}, and

• construct a suitable certificate CERTX whenever agreement has been reached.

In the context of our Round(r) protocol, Binary CBA? is run in round r, where each user already
has computed the already discussed quantity Qr−1. Accordingly, we implement each coin c as
follows.

1. In the first phase 2 of P, each verifier X ∈ TV r

propagates the value vX , SIGX(r,X,Qr−1, 1);

computes the smallest M ∈ TV r such that H(vM) ≤ H(vY) for all Y ∈ TV r; and

sets c
(1)
X to be the least significant bit of H(vM).

2. In the second phase 2 of P, each verifier X ∈ TV r

propagates the value vX , SIGX(r,X,Qr−1, 2);

computes the smallest M ∈ TV r such that H(vM) ≤ H(vY) for all Y ∈ TV r; and

sets c
(2)
X to be the least significant bit of H(vM).

3. And so on.

Note that all the H(vX) are random (because H is a random oracle) and independent (because for
no two rounds and two verifiers are the inputs to H the same, since (r,X, i) is always retrievable
from SIGx(r,X, i)) 256-bit numbers). Thus the least significant bit of H(vM) is a random bit.

Let us now put it all together.

Description of Protocol CBA?(r)

Protocol CBA?(r) is executed at round r —and is in fact called by the already described protocol
Round(r)— when the set of verifiers TV r and the quantities Qr−1 have already been computed.

The players of CBA?(r) are the round-r verifiers. Each verifier i uses 4 local variables: xi, yi,
zi, holding either valid paysets or the value ⊥, and a Boolean bi. Each verifier also holds a counter
γ, initially set to 1. Each message sent includes the round number in which it is sent as well as the

42

digital signature of its sender, although we omit these fields from the text for brevity. In each step,
a verifier i can only send a single message to another verifier. If a step calls for a verifier i to send
a message m to another verifier j, then mj denotes the first message of i actually received by j.

Steps 3 through 5 constitute a loop, where the verifiers repeatedly exchange Boolean values, and
different verifiers may exit this loop at different times. To exit this loop, a verifier Vi broadcasts a
special value, denoted 0∗ (or 1∗), instructing the others to “pretend” they received 0 (or 1) from
Vi in any subsequent Boolean exchanges.

D Blocktrees

We construct blocktrees, our block structure alternative to blockchains, by properly modifying a
much older notion recalled below.

D.1 Merkle Trees

Merkle trees are a way to authenticate n already known values, v0, . . . , vn−1, by means of a single
value v, so that the authenticity of each value vi can be individually and efficiently verified.

For simplicity, assume that n is a power of 2, n = 2k, so that each value is uniquely identified
by a separate k-bit string, s. Then, a Merkle tree T is conceptually constructed by storing specific
values in a full binary tree of depth k, whose nodes have been uniquely named using the binary
strings of length ≤ k.

The root is named ε, the empty string. If an internal node is named s, then the left child of
s is named s0 (i.e., the string obtaining by concatenating s with 0), and the right child is named
s1. Then, identifying each integer i ∈ {0, . . . , n− 1}, with its binary k-bit expansion, with possible
leading 0s, to construct the Merkle tree T , one stores each value vi in leaf i. After this, he chooses
the contents of all other nodes in a bottom up fashion (i.e., he chooses first the contents of all nodes
of depth k − 1, then those of all nodes of depth k − 2, and so on). If vs0 and vs1 are respectively
contained in the left and right child of node s, then he stores the 256-bit value vs , H(vs0, vs1) in
node s. At the end of this process, the root will contain the 256-bit value vε.

A Merkle tree of depth 3 is shown in Figure 1.A, at the end of this paper.
Assume now that vε is known or digitally signed, and let us show how each original value vi

can be authenticated relative to vε.
Consider the (shortest) path P that, starting from a node x, reaches the root. Then, the

authenticating path of the content vx of x is the sequence of the contents of the siblings of the nodes
in P , where the sibling of a node s0 is node s1, and viceversa. Accordingly, an authenticating path
of a leaf value in a tree of depth k consists of k − 1 values. For example, in a Merkle tree of depth
3, the path from leaf 010 to the root is P = 010, 01, 0, ε, and the authenticating path of v010 is
v011, v00, v1, since the root has no sibling. See Figure 1.B at the end of this paper.

To verify (the authenticity of) vi, given its authenticating path, relative to the root value vε, one
reconstructs the contents of the nodes in the path from leaf i to the root, and then checks whether
the last reconstructed value is indeed vε. That is, if the authenticating path is x1, . . . , xk−1, then
one first H-hashes together vi and x1, in the right order —i.e., computes y2 = H(vi, x1), if the
last bit of i is 0, and y2 = H(x1, vi) otherwise. Then, one H-hashes together y2 and x2, in the
right order. And so on, until one computes a value yk and compares it with vε. The value vi is
authenticated if and only if yk = vε.

43

The reason why such verification works is, once again, that H is collision resilient. Indeed,
changing even a single bit of the value originally stored in a leaf or a node also changes, with
overwhelming probability, the value stored in the parent. This change percolates all the way up,
causing the value at the root to be different from the known value vε.

D.2 From Merkle Trees to Blocktrees

As we have seen, Merkle trees efficiently authenticate arbitrary, and arbitrarily many, known values
by means of a single value. Indeed, in order to authenticate k values v0, . . . , vk−1 by the single
root content of a Merkle tree, one must first know v0, . . . , vk−1 in order to store them in the first k
leaves of the tree, store e in other proper nodes, and then compute the content of all other nodes
in the tree, including the root value. Merkle trees have been used in Bitcoin to authenticate the
payments of a given block. Indeed, when constructing (or attempting to construct) a given block,
one has already chosen the payments to put in the block.

However, using Merkle trees to authenticate the block sequence as it grows is more challenging,
because one does not know in advance what blocks to authenticate. Nonetheless, let us show that
Merkle trees can, used in a novel way, yield new block structures enabling the efficient provability
of individual blocks.

Conceptually, in our alternative structures, a block Bi has the following form:

Br = (r, INFOr,Sr) ,

where the structural information Sr is a sequence of dlog re 256-bit strings, that is, dlog re strings
of 32 bytes each. Below, we provide just a specific example of a suitable structural information Sr,
but it will be clear that our techniques enable myriads of efficient block structures alternatives to
blockchains. Those corresponding to our specific choice of Sr are block trees.

Blocks in Blocktrees For brevity, let us set INFOr = vr. Conceptually speaking again, we
start with a full binary tree T of depth k such that 2k upper-bounds the number of possible values
vr. The values v0, v1, . . . are produced in order. When a new value vi is generated, it is, again
figuratively speaking, stored in leaf i of T , and then various strings are computed and stored in the
nodes of T , so as to construct a Merkle tree Ti. One of these strings is the distinguished string e.
When appearing in a node x of Ti, string e signifies that no descendant of x belongs to Ti.

When the first value, v0, is generated and stored in leaf 0, T0 coincides with (the so filled) node
0 of T . In fact, such T0 is an elementary Merkle tree. Its depth is dlog(0 + 1)e = 0, its root is
R0 = 0, and it stores v0 in its first depth-0 leaf (and in fact in its only leaf and node).

When the i+ 1st value, vi, has been generated and stored in leaf i of T (possibly replacing the
string e already there), the Merkle tree Ti is constructed as follows from the previous Merkle tree
Ti−1. (By inductive hypothesis, Ti−1 has depth is dlog ie; root Ri−1; and i depth-dlog(i+1)e leaves,
respectively storing the values v0, . . . , vi−1.)

Let Ri = Ri−1, if leaf i is a descendant of Ri−1, and let Ri be the parent of Ri−1 otherwise.
Let P be the (shortest) path, in T , from leaf i to node Ri. For every node j in P , store the special
string e in its sibling j′, if j′ is empty. Finally, for each node s in P , in order from leaf i (excluded)
to node Ri (included), store in s the value vs = H(vs0, vs1), if vs0 and vs1 respectively are the values
stored in the left and right child of s. It is easy to see that the subtree of T rooted at Ri, storing
the so computed values in its nodes, is a Merkle tree. This Merkle tree is Ti.

44

The construction of the first 8 consecutive Merkle trees, when the initially empty full binary
tree T has depth 3, is synthesized in Figure 2, at the end of the paper. Specifically, each sub-
figure 2.i highlights the Merkle tree Ti by marking each of its nodes either with the special string
e (signifying that “Ti is empty below that node”), or with a number j ∈ {0, . . . , i − 1} (signifying
that the content of the node was last changed when constructing the Merkle tree Tj). To highlight
that the content of a node, lastly changed in Tj , will no longer change, no matter how many more
Merkle trees we may construct, we write j in bold font.

With this in mind, we generate our block-tree structure as follows. After choosing the
information INFOi that we want to secure in the ith block, we store the value vi = INFOi

into leaf i of T ; construct the Merkle tree Ti; and set

Si = (Ri, authi) ,

where Ri is the root of Ti and authi is the authenticating path of vi in Ti. Then, the block is

Bi = (i, INFOi,Si) .

Notice that Si indeed consists of dlog ie strings. To ensure that each string in authi, and thus every
string in Si, is actually 256-bit long, rather than storing vi in leaf i, we may store H(vi) instead.

Efficient Block Constructibility To construct the structural information Si that is part of
block Bi, it would seem that one would need information from all over the Merkle tree Ti. After
all, INFOi and thus the value vi stored in leaf i, are readily available, but the authenticating path
of vi, authi, comprises contents of nodes of previous trees, which in principle may not be readily
available. If one had to obtain the entire Ti−1 in order to construct Si, then constructing a new
block Bi might not be too efficient.

However, note that, very much in the spirit of block chains, each Bi is trivially computable from
the previous block Bi−1 and the chosen information INFOi. Indeed, each string in Si is one of

(a) H(INFOi),

(b) the fixed string e,

(c) a string in Si−1, and

(d) a string obtained by hashing in a predetermined manner strings of the above types.

Figure 3, at the end of this paper, highlights —via a thick border— the nodes whose contents
suffice to compute Si = (Ri, authi) for the construction of the first 8 blocks in a blocktree.
Specifically, each subfigure 3.i highlights the nodes whose contents suffice for generating Si. Each
highlighted node is further marked a, b, or c, to indicate that it is of type (a), (b), or (c). Nodes of
type (d), including the root Ri, are left unmarked.

In sum, in a blocktree-based system, block generation is very efficient.

Efficient Block Provability Let us now analyze proving the content of an arbitrary individual
block Br to someone knowing a subsequent block (e.g., the current last block).

45

Let Bz = (z, INFOz,Sz) be a block, where Sz = (Rz, authz) and z > r. Then, to prove that
Bi is the correct ith block relative to Bz, it suffices to provide the authenticating path of INFOi

in the Merkle tree Tz.
30 Thus, such a proof comprises only dlog ze 32-bit strings.

As already pointed out in Subsection 6.5, log n is at most 30 in most applications (and at most
100 in essentially all human applications). Thus, quite differently from the case of blockchains
proving the content of an individual block is very efficient with blocktrees.

E Efficient Status Structures

Having improved the organization of payment information, let us now turn our attention to
improving that of status information.

Recall that the official status at round r, Sr, consists of a list of tuples, specifying, for
each current public key X, the amount owned by X, and possibly additional information:

Sr = . . . ,
(
X, a

(r)
X , . . .

)
, . . . The amount of money owned by the keys in the system changes

dynamically, and we need to keep track of it as efficiently as possible.
So far, as in Bitcoin (although its status information is quite different), the current status is

not authenticated, but deduced from the authenticated history of payments. There are, however,
significant advantages to authenticating each Sr as well, rather than only PAY r. Indeed, this
would make it easier and more secure, for a new user, or a user who has been off-line for a while,
to catch up with the current system status. In particular, such a user X may have been chosen
to be a round-r verifier, and thus needs to learn Sr−1 in order to perform his duties in round r.
Accordingly, X might ask and obtain the status Sr−1 from another user, but then may worry about
the accuracy of the information received. This worry could dissipate if Sr−1 were authenticated.
But: who should authenticate the status at the end of a round?

In Algorand, there is a natural choice: namely, (a given majority of) the verifiers of that round.31

Indeed such verifiers, in order to perform their duties, presumably already know the previous status,
and thus it is easy for them, after computing the current official payset, to compute and authenticate
also the corresponding new status.

In sum, the round-r verifiers may conceptually operate as follows:

(a) Obtain the authenticated status Sr−1;

(b) Compute, authenticate, and propagate PAY r; and

(c) Compute, authenticate, and propagate Sr.

This way of operating presupposes that (at least a given majority of) the verifiers in TV r already
know, or can correctly obtain, TV r−1. But obtaining TV r−1 is easier than correctly obtaining
Sr−1. In particular, under all improved verifier-selection mechanisms of Section 6, each verifier

30Notice that this path is actually the concatenation of the authenticating path of INFOi in Ti and the
“authenticating path” of Ri in Tz. Indeed, the notion of an authenticating path, defined for (the contents of)
leafs, is readily extended to arbitrary nodes.

31Equivalently, the leader of that round may authenticate the resulting status together with his proposed payset
for the round, and then the verifiers may verify both, and agree and certify the official payset and the resulting status
together.

46

Y in TV r−1 provides a proof of his belonging to TV r−1, and this proof may be easily requested,
obtained, and verified.32

The above organization of a round may already be very beneficial. Indeed, it avoids that one
must obtain the entire payment history in order to be sure about how much money each user
currently owns. Yet, there is room for efficiency improvements.

Indeed, note that propagating an authenticated version of PAY r can be done reasonably
efficiently, because, although the number of users may be very large, the number of payments
made in a single one-minute round, can be expected to be reasonably small. However, if there were
—say— 100 million users in the system, and the status of each of them comprises —say— 100
bytes, then Sr would comprise 10 gigabytes.

Propagating such a large file is not trivial. Even authenticating it is not trivial. Indeed,
computing H(Sr) by hash-chaining, and then digitally signing the 32-byte result, would require
computing one digital signature, which is trivial, but computing 100 million hashings (at about a
microsecond per hash) would require 100 seconds. Only propagating the verifiers’ digital signatures
of Sr is trivial, because they are relatively few and short.

Accordingly, let us put forward a better status structure.

E.1 Efficient Status Structures via Blocktree Technology

Recall our use of blocktree, in Section D, in order to produce a new block Br in a way that allowed
both efficient block generation and efficient individual block provability.

At a high level, to generate a new block Br at round r, we generated a Merkle tree Tr from the
previous Merkle tree Tr−1 and its associated short structural information Sr−1, by

(a) storing the information of a new block, INFOr = vr, into empty leaf r of the underlying big
binary tree T ;

(b) using Sr−1 in order to compute the contents of the nodes in the (shortest) path from leaf r to
the (possibly new) root Rr of the new Merkle tree Tr; and

(c) computing the new structural information Sr to facilitate the construction of the next Merkle
tree.

Note that Tr is the smallest Merkle tree that contains the first r leaves of T . In principle, to
construct Tr one would have to compute, by hashing, the contents of all its nodes, in the typical
bottom-up fashion, starting from its leaves. This would take a long time. It is having available the
properly constructed structural information Sr−1 that prevents us from having to handle all leaves
and indeed all nodes of Tr.

In our new application, we plan a similar strategy. Namely,

Game Plan We plan to start with a big, underlying, and initially empty, binary tree T ′;
to progressively store status information in its leaves; to construct a sequence of Merkle trees,
T ′1, T

′
2, . . ., where the leaves of T ′r collectively store the entire status information Sr; and to construct

32Recall that such a proof consists of a digital signature of Y , where Y was a key already existing a few rounds
before r − 1. But then, for most Y ∈ TV r−1, Y is a much older key, and thus may be already known to a verifier
X in TV r, who at least learned some prior status. In any case, at least some information is necessary to verify any
authenticated information. The point is to ensure that such necessary information is minimal, and easily known or
easy to learn.

47

a matching sequence of structural information, S ′1,S ′2, . . ., in order to facilitate the construction of
future trees. 4

This is a simple enough plan. But: How to choose S ′r?
Before answering this question, we should decide what status information is stored in a leaf. We

could certainly store status information about multiple keys, but prefer, for conceptual simplicity,
to store just the status information of a single key. Specifically, the ith leaf of T ′ stores only the
tuple corresponding to ith key in the system, in order of appearance. (Recall that, in a round r,
multiple keys may appear for the first time as payees in payset PAY r. But since all sets in Algorand
are ordered, including all paysets PAY r, the ith key in order of appearance is well defined.) Having
clarified this, we now construct the structural information S ′r in two stages. Better said, we let
S ′i consist of two components, each corresponding to a difference between the Merkle tree Tr, of
our previous block-structure application, and the Merkle tree T ′r, of our current status-structure
application.

A First Difference, A First component of S ′r A first difference between the Merkle trees
T1, T2, . . . and the Merkle trees T ′1, T

′
2, . . . is the following. Each Tr had only one more (non-empty)

leaf than Tr−1. However, T ′r may have many more leaves than T ′r−1.
More precisely, let nr be the cardinality of PKr, that is, the number of users at the start of

round r, and qr the cardinality of PKr \ PKr−1, that is, the number of new keys appearing as
payees in PAY r.

Then

• nr+1 = nr + qr;

• T ′r has nr+1 non-empty leaves, each storing the tuple corresponding to a key in PKr+1;

• the old leaves of T ′r (i.e., its first nr leaves) continue to store the tuples corresponding to the
old keys (i.e., the keys in PKr);

• the new leaves of T ′r (i.e., its next qr leaves) store the tuples corresponding to the new keys
(i.e., the keys in PKr \ PKr−1); and

• the depth of T ′r is dlog nr+ie.
Despite the fact that there may be qr > 1 new leaves in T ′r, it is easy to see that the same type of
structural information as in our block application suffices to enable the “efficient addition to Tr−1”
of the new qr leaves.

Recall that, in our previous application, Sr = (Ri, authr). Then, in our current appli-
cation, let Sr consist of Rr and the authenticating paths of all new leaves: that is, Sr ,(
Rr,

{
authr : vr ∈ PKr \ PKr−1}). Then,

The first component of S ′r is Sr.

The structural information Sr suffices to “handle the inclusion in T ′r+1” of all new leaves, without
having full knowledge of T ′i . Better said, Si suffices to efficiently construct a Merkle tree, T ′′r , that
(1) contains T ′r−1 as a subtree, and (2) includes the new qr leaves. (In fact, since the authenticating
paths of the new leaves overlap, one may define Sr more succinctly. We omit to do so since it is
not going to yield significant improvements in efficiency.)

However, a second difference between our block-structure and status-structure applications
prevents T ′′r from being the Merkle tree T ′r we want.

48

The Second Difference, and the Second Conceptual Component of S ′r The second
difference is that, while the old leaves of Tr have the same contents they had in Tr−1, the old
leaves of T ′r may have different contents in T ′r than in T ′r−1. This is so because the payments of
round r cause the amounts owned by some old keys to change. More precisely, letting tr be the total
number of payers and payees in PAY r, then up to tr old leaves of T ′r can have contents different
from those they had in Tr−1. What makes it easy to “efficiently add to T ′r ” the contents of the
new leaves is that the new leaves are “neatly” positioned in T ′r. Namely they consecutively appear
after the last old leaf. Thus, conceptually speaking, to add them in T ′r we need not know the entire
tree T ′r−1, but only the information stored at its “frontier” (which, in a tree of logarithmic depth
is not much information at all).

By contrast, in the official payset PAY r−1, the old payer and payee keys may appear anywhere
in the old leaves of T ′r. But this is far from implying that we need the whole Tr−1 in order to
construct T ′r correctly. Indeed whenever, due to a payment in PAY r−1, the content of an old leaf
i changes, only the contents of the path Pi, that is, the (shortest) path from leaf i to the root,
need to be updated, and this path is short (indeed logarithmic in nr). Moreover, the number of
payments in PAY r−1, and more generally the number of payments in any one-minute round, should
be small relative to the total number of public keys in the system. This leads to a hypothetical
second component of S ′r as follows.

Let X be an old key whose content, due to the payments in PAY r−1, has changed. That is,(
X, a

(r−1)
X , . . .

)
6=
(
X, a

(r)
X , . . .

)
. If X is the ith key, then, to reconstruct the contents of the nodes

of Pi in T ′r, it suffices to have the authenticating path of leaf i in the Merkle tree T ′r−1. Identifying
each key with its number of appearance, we may denote this authenticating path by authr−1(X),
and refer to leaf i as leaf X.

As we said, such an authenticating path is very short. More precisely, it consists of dlog nre
values of 32-bytes each. Since log 109 < 30, in a system with a billion users authr−1(X) is at most

one kilo-byte of information. Moreover, given authr−1(X) and the new content
(
X, a

(r)
X , . . .

)
of leaf

X, computing the contents of all nodes in the path from leaf X to the root of T ′r only requires, again
in a system with one billion users, at most 30 hashings, which is a trivial amount of computation.
Thus, conceptually, the second component of S ′r−1 we need to finish the construction of T ′r consists
of all such authenticating paths:

The conceptual second component of S ′r−1 is S̃ ′r−1 = {authr−1(X) : X old }.

The problem, of course, is that no matter how helpful the previous-round verifiers want to be,

they cannot provide S̃ ′r−1, because they cannot predict what payments the users will make in the
next round. Thus: how can the round-r verifiers obtain authr−1(X)?

A New Requirement In a payment system, each user X has a personal interest in keeping
—and in fact safekeeping— a proof of the current amount he owns. (In addition, other users may
ask X for such a proof. For instance, if X wishes to make a payment P to a payee Y in a round
r, then Y may demand to see a proof that X indeed has enough money to make at least that
payment.)

More generally, a user X may wish to have a proof of his own full status, Sr
X , that is, at a round

r, of the tuple Sr
X =

(
X, a

(r)
X , . . .

)
.

49

In the envisaged status structure, a proof of Sr−1
X , the status of X at the start of round r,

precisely consists of the authenticating path authr−1(X) in tree T ′r−1.
Thus, assuming for a moment that each user X can easily obtain such a proof, we may require

that, for a round-r payment P with payer X and payee Y , also the proofs authr−1(X) and
authr−1(Y) be presented. For simplicity, let us assume that they are actually explicitly included in
P itself (e.g., as part of P ’s information field I) and that they must be properly verified for P to be
valid. To emphasize that the payments are now so enriched, we shall denote the official payset of a
round r by PAY r. (Let us stress again that PAY r is essentially comparable in length to PAY r.)

Then, the second component of S ′r consists of the authenticating paths, in the Merkle tree T ′r!,
for each X ∈ OldKeys (PAY r), that is for each key X whose content changes due to the payments
in PAY r:

S̃ ′r = {authr(X) : X ∈ OldKeys(PAY r)} .

We now make two claims:

(a) The verifiers of a round r, given PAY r−1, Sr−1 and S̃r−1, can determine PAY r, Sr and S̃r.

(b) Every user Z, whether or not being a payer or a payee in round r, can, from PAY r, Sr, S̃r,
and authr−1(Z), efficiently compute authr(Z), that is a proof of his status Sr

X .

(In fact it is because of this ability of the users that the round-r verifiers can receive the enriched
official payset PAY r−1 instead of the old PAY r−1.)

Let us first informally prove the first claim.
First of all, once the users propagate the payments of round r, the round-r verifiers, and the

round leader construct PAY r as usual (e.g., as in the preferred version of Algorand).
Second, the round-r verifiers can construct (and then authenticate) Sr from Sr−1 as explained

above.
Third, the round-r verifiers retrieve, from the enriched payments in PAY r, the authenticating

paths authr−1(X) T ′r−1 for any X ∈ OldKeys(PAY r), and, from these authenticating paths and Sr,
they finally produce the new authenticating paths in T ′r that constitute S̃r.

Let us now informally argue the second claim.
A user Z can compute authr(Z) by the following three steps.

1. For each old key X ∈ OLdKeys(PAY r), Z uses the new content of leaf X and authr(X)
to compute both pathr(X) and contentr(X): respectively (a) the sequence of nodes in the
(shortest) path from leaf X to the root of T ′r (in that order) and (b) the sequence of the
contents of the nodes in pathr(Z) (in the same order).

2. If one node in pathr(X) coincides with the sibling of a node in the path, in T ′r−1, from leaf Z
to the root of T ′r−1, then Z replaces in authr−1(Z) the content of that node with the content
of the same node in contentr(X).

Let authr−1(Z)′ be the resulting sequence after all such replacements.

3. From the structural information Sr, Z computes the authenticating path of the root of T ′r−1 in
the new tree T ′r, authr(Rr−1), and then appends this authenticating path to authr−1(Z)′.

It is easy to see that the resulting sequence is Z’s new authenticating path authr(Z) in T ′r.

50

Summarizing In sum, we have organized the status information in a Merkle-tree fashion, so that
(1) each user has a short proof of his own status at each round; (2) each payment at a round r
is enriched so as to include a proof of round-(r − 1) status of the payers and the payee; (3) it is
possible for the verifiers of a round r to process all payments and produce the (enriched) official
payset, using only a very small amount of information from the previous round (rather than the
entire status of the previous round); and (4) it is possible for every user, possessing a proof of his
own status in the previous round, to efficiently compute a proof of his status in the current round,
whether he has made any payments or not.

Notice that this organization puts some burden on the users who want to make a payment, but
(a) putting one’s financial status in order when making a payment may not be an unreasonable
requirement; (b) a user is not required to update the entire status information, but only his own
small piece of it; (c) if a user does not keep updating his own status, then he does not need to
recompute it, round-by-round, from the last time in which he did: all he has to do is to request from
someone else just his own current and short proof of his current status, a proof whose correctness
he can verify based on the same short structural information used by the verifiers; and (d) the
verifiers need only obtain a short amount of information, if they have been off-line for a long time,
in order to be fully prepared to perform their duties.

Finally, (f) if so desired, as in our block application, one can efficiently prove the amount owned
by the users at a given round.

One Important Protection As we have said, the status of a player X at a round r, Sr
X =(

X, a
(r)
X , . . .

)
, may possess several fields in addition to “his own name” and “the amount he owns”.

Let us suggest that one of these fields, say the third, be a self-certified declaration of how much X

owns at a round q ≤ r: for example, SIGX

(
X, q, a

(q)
X

)
. Thus, the round-r status of X is of the

form
Sr
X =

(
X, a

(r)
X , SIGX

(
X, q, a

(q)
X

)
. . .
)
.

When X is the payer or the payee of a payment P in a round r, P should include, as already said,
the proof of his status at round r−1, authr−1(X), which of course authenticates also the third field.

But for P to be a valid round-r payment, not only should auth
(r−1)
X be correct, but the third field

should actually be “up-to-date”: that is, it must indicate the last round, SIGX

(
X, r − 1, a

(r−1)
X

)
,

and must correctly report the amount X actually ownwed at the end of round r − 1.
There are several clear advantages in so enriching the status information.

Acknowledgements

I would like to first acknowledge Sergey Gorbunov, my coauthor of the cited Democoin system,
which provided the foundation of Algorand: relying on a cryptographically chosen and ever-
changing committee of verifiers.

My most sincere thanks go to Maurice Herlihy, for many enlightening discussions, for pointing
out that pipelining will improve Algorand’s throughput performance, and for greatly improving the
exposition of an earlier version of this paper. (Unfortunately for the reader, I have further revised
it, so I am solely to blame for its current deficiencies.)

51

Thanks to Ron Rivest for innumerable discussions and guidance in cryptographic research over
more than 3 decades, for coauthoring the cited micropayment system that has inspired one of the
verifier selection mechanisms of Algorand, and for informing me that he and David Karger had
already thought of a similar way of structuring payments in a public ledger.

Thanks to Jing Chen, for several helpful discussions and her usual patience, kindness, and
unfailing wisdom.

Thanks to my colleagues Arvind, Hari Balakrishnan, Frans Kaashoek, Robert Morris, Martin
Rinard, and Nikolai Zeldovich for trying to explain to a naive theoretician (to put it mercifully)
how modern Internet communication protocols work.

Thanks also to David Lazar and Yossi Gilad for their interest in this technology and for running
some initial experimental tests.

References

[1] Bitcoin Block Chain Info, https://blockchain.info, Feb 2015.

[2] HowStuffWorks.com. How much actual money is there in the world?, https://money.

howstuffworks.com/how-much-money-is-in-the-world.htm As of 5 June 2016.

[3] Wikiquote.org. William F. Buckley Jr., https://en.wikiquote.org/wiki/William_F.

_Buckley,_Jr. As of 5 June 2016.

[4] S. Gorbunov and S. Micali. Democoin: A Publicly Verifiable and Jointly Serviced Cryptocurrency
https://eprint.iacr.org/2015/521 May 30, 2015.

[5] Ethereum. Ethereum https://github.com/ethereum/ As of 12 June 2016.

[6] Bitcoinwiki. Proof of Stake http://www.blockchaintechnologies.com/

blockchain-applications As of 5 June 2016.

[7] S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System http://www.bitcoin.org/

bitcoin.pdf May 2009.

[8] Coindesk.com. Bitcoin: A Peer-to-Peer Electronic Cash System http://www.coindesk.com/

ibm-reveals-proof-concept-blockchain-powered-internet-things/ As of June 2016.

[9] Wikipedia. Numbers Game https://en.wikipedia.org/wiki/Numbers_game As of 5 June
2016.

[10] D. L. Chaum, Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms,
Commun. ACM, Volume 24, Number 2, Pages 84–90, 1981.

[11] Bitcoin Computation Waste, http://gizmodo.com/the-worlds-most-powerful-computer-
network-is-being-was-504503726, 2013.

[12] S. King, S. Nadal, PPCoin: Peer-to-Peer Crypto-Currency with Proof-of-Stake, 2012.

[13] S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System, 2008.

52

https://blockchain.info
https://money.howstuffworks.com/how-much-money-is-in-the-world.htm
https://money.howstuffworks.com/how-much-money-is-in-the-world.htm
https://en.wikiquote.org/wiki/William_F._Buckley,_Jr.
https://en.wikiquote.org/wiki/William_F._Buckley,_Jr.
https://eprint.iacr.org/2015/521
https://github.com/ethereum/
http://www.blockchaintechnologies.com/blockchain-applications
http://www.blockchaintechnologies.com/blockchain-applications
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
http://www.coindesk.com/ibm-reveals-proof-concept-blockchain-powered-internet-things/
http://www.coindesk.com/ibm-reveals-proof-concept-blockchain-powered-internet-things/
https://en.wikipedia.org/wiki/Numbers_game
http://gizmodo.com/the-worlds-most-powerful-computer-network-is-being-was-504503726
http://gizmodo.com/the-worlds-most-powerful-computer-network-is-being-was-504503726

[14] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults. J. Assoc.
Comput. Mach., 27 (1980), pp. 228-234.

[15] M. Fischer. The consensus problem in unreliable distributed systems (a brief survey). Proc.
International Conference on Foundations of Computation, 1983.

[16] B. Chor and C. Dwork. Randomization in Byzantine agreement, in Randomness and
Computation. S. Micali, ed., JAI Press, Greenwich, CT, 1989, pp. 433-498.

[17] D. Dolev and H.R. Strong. Authenticated algorithms for Byzantine agreement. SIAM Journal
on Computing 12 (4), 656-666.

[18] R. Turpin and B. Coan. Extending binary Byzantine agreement to multivalued Byzantine
agreement. Inform. Process. Lett., 18 (1984), pp. 73-76.

[19] M. Ben-Or. Another advantage of free choice: Completely asynchronous agreement protocols.
Proc. 2nd Annual Symposium on Principles of Distributed Computing, ACM, New York, 1983,
pp. 27-30.

[20] M. Rabin. Randomized Byzantine generals. Proc. 24th Annual IEEE Symposium on
Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1983.
pp. 403-409.

[21] M. Castro and B. Liskov. Practical Byzantine Fault Tolerance, Proceedings of the Third
Symposium on Operating Systems Design and Implementation. New Orleans, Louisiana, USA,
1999, pp. 173–186.

[22] P. Feldman and S. Micali. 18. An Optimal Probabilistic Algorithm for Synchronous Byzantine
Agreement. (Preliminary version in STOC 88.) SIAM J. on Computing, 1997

[23] J. Katz and C-Y Koo On Expected Constant-Round Protocols for Byzantine Agreement
https://www.cs.umd.edu/ jkatz/papers/BA.pdf

[24] Litecoin, https://litecoin.org/, 2011.

[25] D. Lazar and Y. Gilad. Personal Communication.

[26] S. Micali and R. L. Rivest em Micropayments Revisited. Lecture Notes in Computer Science,
Vol. 2271, pp 149-163, Springer Verlag, 2002

53

https://litecoin.org/

Fig. 1.A A Full Merkle Tree of Depth 3

𝑣𝑠 = 𝐻 𝑣𝑠0, 𝑣𝑠1 for all binary string 𝑠 ∈ 0,1 ≤3

𝑣ϵ

𝑣0 𝑣1

𝑣00 𝑣01 𝑣10 𝑣11

𝑣000 𝑣010𝑣001 𝑣011 𝑣010 𝑣101 𝑣110 𝑣111

𝒗𝟏

𝒗𝟎𝟎

𝑣010 𝒗𝟎𝟏𝟏

Fig. 1.B The Authenticating Path of Value 𝑣010

The path from 𝑣010 to the root can be found by following the arrows.
The contents of the siblings of the nodes in the path are shown in bold font.
The authenticating path of 𝑣010 is the (bottom-up) sequence of the siblings’ contents: 𝑣011, 𝑣00, 𝑣1.
The contents of all nodes in the path can be computed from 𝑣010 and its authenticating path via 𝐻.
All other nodes are ignored.

54

𝟎 𝟎

𝟏

𝟏

𝟎

𝟏

𝟏 𝟐 𝑒

2

2

𝟎

𝟏

𝟏 𝟐 𝟑

𝟑

𝟑

𝟎

𝟏

𝟏 𝟐 𝟑

𝟑

𝟑

𝟒

4

4

4

𝑒

𝑒

𝟎

𝟏

𝟏 𝟐 𝟑

𝟑

𝟑

𝟒

𝟓

5

5

𝟓

𝑒

𝟎

𝟏

𝟏 𝟐 𝟑

𝟑

𝟑

𝟒

𝟓

6

6

𝟓 𝑒𝟔

6

𝟎

𝟏

𝟏 𝟐 𝟑

𝟑

𝟑

𝟒

𝟓

𝟕

𝟕

𝟓 𝟔

𝟕

𝟕

Fig. 2 The First 8 Merkle trees constructed within a full binary tree of depth 3.

In Fig 2.𝑖, nodes marked by an integer belong to Merkle Tree 𝑇𝑖.
Contents of nodes marked by 𝑖 (respectively, by 𝒊) are temporary (respectively, permanent).

2.0 2.1

2.3
2.2

2.7

2.52.4

2.6

55

Fig. 3 The Items sufficient to construct the structural information of the first 8 blocks in a blocktree.

In Fig 3.𝑖, the contents of the boldly circled nodes suffice to construct the structural information of block 𝐵𝑖.
For instance, the node marked 𝑐 in 2.2 is the root 𝑅1 of tree 𝑇1, which is explicitly part of block 𝐵1.

3.0 3.1

3.3
3.2

3.7

3.53.4

3.6

𝒂 𝒂𝒄

𝒄

𝒆𝒂

𝒄

𝒂𝒄

𝒄

𝒄

𝒄

𝒄

𝒄

𝒄

𝒂

𝒂 𝒂

𝒆

𝒆

𝒆

𝒄

𝒄 𝒂

𝒆

56

	1 Introduction
	2 Prior Problems and Concerns
	3 Preliminaries
	3.1 Cryptographic Background
	3.2 The Idealized Payment System
	3.3 Basic Notions and Notations
	3.4 The Adversarial Model
	3.5 The Communication Model

	4 Organization of the Following Sections
	5 Basic Algorand
	5.1 Special (Temporary) Assumptions and Requirements
	5.2 Intuition
	5.3 Precise Description
	5.4 Basic Performance Analysis
	5.5 Incentives and Disincentives

	6 Improvements
	6.1 Optimizing Throughput
	6.2 Removing the Longer Corruption Time Assumption
	6.3 Removing the Continual Participation Requirement
	6.4 Removing the One-Key-Per-User Assumption
	6.5 More General and Efficient Block Structures
	6.6 Using More Sophisticated Cryptographic Tools

	7 Permissioned Algorand
	7.1 Digital Certificates

	A The Proof-of-Work Approach of Bitcoin
	B Alternative Verifier-Selection Mechanisms
	C Certified Byzantine Agreement
	C.1 The Notion of Certified Byzantine Agreement
	C.2 The Protocol Classical CBA
	C.3 The Protocol CBA

	D Blocktrees
	D.1 Merkle Trees
	D.2 From Merkle Trees to Blocktrees

	E Efficient Status Structures
	E.1 Efficient Status Structures via Blocktree Technology

